BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17923157)

  • 1. Catalytic turnover dependent modification of the Pseudomonas aeruginosa heme oxygenase (pa-HO) by 5,6-O-isopropyledine-2-O-allyl-ascorbic acid.
    Bhakta MN; Olabisi A; Wimalasena K; Wilks A
    J Inorg Biochem; 2008 Feb; 102(2):251-9. PubMed ID: 17923157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme.
    Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M
    J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Pseudomonas aeruginosa.
    Rodríguez JC; Zeng Y; Wilks A; Rivera M
    J Am Chem Soc; 2007 Sep; 129(38):11730-42. PubMed ID: 17764179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions.
    Matsui T; Unno M; Ikeda-Saito M
    Acc Chem Res; 2010 Feb; 43(2):240-7. PubMed ID: 19827796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme.
    Migita CT; Zhang X; Yoshida T
    Eur J Biochem; 2003 Feb; 270(4):687-98. PubMed ID: 12581208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation.
    Matsui T; Nakajima A; Fujii H; Matera KM; Migita CT; Yoshida T; Ikeda-Saito M
    J Biol Chem; 2005 Nov; 280(44):36833-40. PubMed ID: 16115896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin.
    Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T
    Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin.
    Wilks A; Ikeda-Saito M
    Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of oxaporphyrin ring of CO-bound α-verdoheme complexed with heme oxygenase-1 by NADPH-cytochrome P450 reductase.
    Sato H; Higashimoto Y; Sakamoto H; Sugishima M; Shimokawa C; Harada J; Palmer G; Noguchi M
    J Inorg Biochem; 2011 Feb; 105(2):289-96. PubMed ID: 21194630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1.
    Liu Y; Ortiz de Montellano PR
    J Biol Chem; 2000 Feb; 275(8):5297-307. PubMed ID: 10681502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of the meso-methylmesoheme regioisomers by heme oxygenase. Electronic control of the reaction regiospecificity.
    Torpey J; Ortiz de Montellano PR
    J Biol Chem; 1996 Oct; 271(42):26067-73. PubMed ID: 8824248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage.
    Lad L; Ortiz de Montellano PR; Poulos TL
    J Inorg Biochem; 2004 Nov; 98(11):1686-95. PubMed ID: 15522396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme.
    Unno M; Matsui T; Ikeda-Saito M
    J Inorg Biochem; 2012 Aug; 113():102-9. PubMed ID: 22673156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyl peroxides reveal the ring opening mechanism of verdoheme catalyzed by heme oxygenase.
    Matsui T; Omori K; Jin H; Ikeda-Saito M
    J Am Chem Soc; 2008 Apr; 130(13):4220-1. PubMed ID: 18331037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical reduction of ferrous alpha-verdoheme in complex with heme oxygenase-1.
    Sato H; Higashimoto Y; Sakamoto H; Sugishima M; Takahashi K; Palmer G; Noguchi M
    J Inorg Biochem; 2007 Oct; 101(10):1394-9. PubMed ID: 17644182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex.
    Zhang X; Migita CT; Sato M; Sasahara M; Yoshida T
    FEBS J; 2005 Feb; 272(4):1012-22. PubMed ID: 15691334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations.
    Alavi FS; Gheidi M; Zahedi M; Safari N; Ryde U
    Dalton Trans; 2018 Jun; 47(25):8283-8291. PubMed ID: 29892759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction intermediates in the heme degradation reaction by HutZ from Vibrio cholerae.
    Uchida T; Sekine Y; Dojun N; Lewis-Ballester A; Ishigami I; Matsui T; Yeh SR; Ishimori K
    Dalton Trans; 2017 Jun; 46(25):8104-8109. PubMed ID: 28607990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.
    Evans JP; Niemevz F; Buldain G; de Montellano PO
    J Biol Chem; 2008 Jul; 283(28):19530-9. PubMed ID: 18487208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase.
    Matsui T; Sugiyama R; Sakanashi K; Tamura Y; Iida M; Nambu Y; Higuchi T; Suematsu M; Ikeda-Saito M
    J Biol Chem; 2018 Oct; 293(43):16931-16939. PubMed ID: 30237172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.