These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17923176)

  • 1. Numerical simulation of tooth movement in a therapy period.
    Qian Y; Fan Y; Liu Z; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S48-52. PubMed ID: 17923176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of bone remodeling theories in the simulation of orthodontic tooth movements.
    Bourauel C; Vollmer D; Jäger A
    J Orofac Orthop; 2000; 61(4):266-79. PubMed ID: 10961052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment.
    Cai Y; Yang X; He B; Yao J
    BMC Oral Health; 2015 Sep; 15():106. PubMed ID: 26337291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic behavior of the finite helical axis in a simple tooth movement simulation.
    Hayashi K; Tanaka H; Hikita K; Mizoguchi I
    Med Eng Phys; 2004 Dec; 26(10):867-72. PubMed ID: 15567702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of orthodontic tooth movements. A comparison of numerical models.
    Bourauel C; Freudenreich D; Vollmer D; Kobe D; Drescher D; Jäger A
    J Orofac Orthop; 1999; 60(2):136-51. PubMed ID: 10220981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of canine retraction by sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2005 May; 127(5):542-51. PubMed ID: 15877034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical simulation of tooth movement by wire bending.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2006 Oct; 130(4):452-9. PubMed ID: 17045144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens.
    Cattaneo PM; Dalstra M; Melsen B
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):681-9. PubMed ID: 18456141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biomechanical study on orthodontic tooth movement by means of numerical simulation. Effects of principal stresses in periodontal membrane].
    Inoue Y
    Osaka Daigaku Shigaku Zasshi; 1989 Dec; 34(2):306-21. PubMed ID: 2488922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the centre of resistance in an upper human canine and idealized tooth model.
    Vollmer D; Bourauel C; Maier K; Jäger A
    Eur J Orthod; 1999 Dec; 21(6):633-48. PubMed ID: 10665193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element model of apical force distribution from orthodontic tooth movement.
    Rudolph DJ; Willes PMG ; Sameshima GT
    Angle Orthod; 2001 Apr; 71(2):127-31. PubMed ID: 11302589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force: tridimensional analysis by means of the finite element method.
    Cobo J; Sicilia A; Argüelles J; Suárez D; Vijande M
    Am J Orthod Dentofacial Orthop; 1993 Nov; 104(5):448-54. PubMed ID: 8237897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticotomy affects both the modus and magnitude of orthodontic tooth movement.
    Verna C; Cattaneo PM; Dalstra M
    Eur J Orthod; 2018 Jan; 40(1):107-112. PubMed ID: 28591765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative approach for the prediction of tooth movement during orthodontic treatment.
    Soncini M; Pietrabissa R
    Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):361-8. PubMed ID: 12745433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adaptive response of periodontal ligament to orthodontic force loading - a combined biomechanical and biological study.
    Zhao Z; Fan Y; Bai D; Wang J; Li Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S59-66. PubMed ID: 18078696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM.
    Sung SJ; Baik HS; Moon YS; Yu HS; Cho YS
    Am J Orthod Dentofacial Orthop; 2003 Apr; 123(4):441-50. PubMed ID: 12695772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dentoalveolar stress from bodily tooth movement at different levels of bone loss.
    Cobo J; Argüelles J; Puente M; Vijande M
    Am J Orthod Dentofacial Orthop; 1996 Sep; 110(3):256-62. PubMed ID: 8814025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical simulation of tooth movement produced by molar uprighting spring.
    Kojima Y; Mizuno T; Fukui H
    Am J Orthod Dentofacial Orthop; 2007 Nov; 132(5):630-8. PubMed ID: 18005837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption.
    Viecilli RF; Katona TR; Chen J; Hartsfield JK; Roberts WE
    Am J Orthod Dentofacial Orthop; 2008 Jun; 133(6):791.e11-26. PubMed ID: 18538239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.