BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17923701)

  • 1. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo.
    Kuroyanagi H; Ohno G; Mitani S; Hagiwara M
    Mol Cell Biol; 2007 Dec; 27(24):8612-21. PubMed ID: 17923701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle-specific splicing factors ASD-2 and SUP-12 cooperatively switch alternative pre-mRNA processing patterns of the ADF/cofilin gene in Caenorhabditis elegans.
    Ohno G; Ono K; Togo M; Watanabe Y; Ono S; Hagiwara M; Kuroyanagi H
    PLoS Genet; 2012; 8(10):e1002991. PubMed ID: 23071450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo.
    Kuroyanagi H; Kobayashi T; Mitani S; Hagiwara M
    Nat Methods; 2006 Nov; 3(11):909-15. PubMed ID: 17060915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.
    Kuroyanagi H; Watanabe Y; Hagiwara M
    PLoS Genet; 2013; 9(2):e1003337. PubMed ID: 23468662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backbone-independent nucleic acid binding by splicing factor SUP-12 reveals key aspects of molecular recognition.
    Amrane S; Rebora K; Zniber I; Dupuy D; Mackereth CD
    Nat Commun; 2014 Sep; 5():4595. PubMed ID: 25183497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RBFOX and SUP-12 sandwich a G base to cooperatively regulate tissue-specific splicing.
    Kuwasako K; Takahashi M; Unzai S; Tsuda K; Yoshikawa S; He F; Kobayashi N; Güntert P; Shirouzu M; Ito T; Tanaka A; Yokoyama S; Hagiwara M; Kuroyanagi H; Muto Y
    Nat Struct Mol Biol; 2014 Sep; 21(9):778-86. PubMed ID: 25132178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RNA-binding protein SUP-12 controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans.
    Anyanful A; Ono K; Johnsen RC; Ly H; Jensen V; Baillie DL; Ono S
    J Cell Biol; 2004 Nov; 167(4):639-47. PubMed ID: 15545320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein chemical shift assignments of the unbound and RNA-bound forms of the alternative splicing factor SUP-12 from C. elegans.
    Amrane S; Mackereth CD
    Biomol NMR Assign; 2014 Apr; 8(1):109-12. PubMed ID: 23334698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals.
    Underwood JG; Boutz PL; Dougherty JD; Stoilov P; Black DL
    Mol Cell Biol; 2005 Nov; 25(22):10005-16. PubMed ID: 16260614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA processing.
    Zhou HL; Baraniak AP; Lou H
    Mol Cell Biol; 2007 Feb; 27(3):830-41. PubMed ID: 17101796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing factor SUP-12 and the molecular complexity of apparent cooperativity.
    Mackereth CD
    Worm; 2014; 3(4):e991240. PubMed ID: 26430555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1gamma gene.
    Fukumura K; Kato A; Jin Y; Ideue T; Hirose T; Kataoka N; Fujiwara T; Sakamoto H; Inoue K
    Nucleic Acids Res; 2007; 35(16):5303-11. PubMed ID: 17686786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position-dependent and neuron-specific splicing regulation by the CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans.
    Kuroyanagi H; Watanabe Y; Suzuki Y; Hagiwara M
    Nucleic Acids Res; 2013 Apr; 41(7):4015-25. PubMed ID: 23416545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16.
    Ponthier JL; Schluepen C; Chen W; Lersch RA; Gee SL; Hou VC; Lo AJ; Short SA; Chasis JA; Winkelmann JC; Conboy JG
    J Biol Chem; 2006 May; 281(18):12468-74. PubMed ID: 16537540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG.
    Jin Y; Suzuki H; Maegawa S; Endo H; Sugano S; Hashimoto K; Yasuda K; Inoue K
    EMBO J; 2003 Feb; 22(4):905-12. PubMed ID: 12574126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global regulatory features of alternative splicing across tissues and within the nervous system of
    Koterniak B; Pilaka PP; Gracida X; Schneider LM; Pritišanac I; Zhang Y; Calarco JA
    Genome Res; 2020 Dec; 30(12):1766-1780. PubMed ID: 33127752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multiplicity of alternative splicing decisions in Caenorhabditis elegans is linked to specific intronic regulatory motifs and minisatellites.
    Glauser DA
    BMC Genomics; 2014 May; 15(1):364. PubMed ID: 24884695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities.
    Nakahata S; Kawamoto S
    Nucleic Acids Res; 2005; 33(7):2078-89. PubMed ID: 15824060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing in C. elegans.
    Zahler AM
    WormBook; 2005 Sep; ():1-13. PubMed ID: 18050427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo.
    Ohno G; Hagiwara M; Kuroyanagi H
    Genes Dev; 2008 Feb; 22(3):360-74. PubMed ID: 18230701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.