BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17924062)

  • 1. A chemical-genetic approach to elucidate protein kinase function in planta.
    Böhmer M; Romeis T
    Plant Mol Biol; 2007 Dec; 65(6):817-27. PubMed ID: 17924062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDPK-mediated signalling pathways: specificity and cross-talk.
    Ludwig AA; Romeis T; Jones JD
    J Exp Bot; 2004 Jan; 55(395):181-8. PubMed ID: 14623901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.
    Huang K; Peng L; Liu Y; Yao R; Liu Z; Li X; Yang Y; Wang J
    Biochem Biophys Res Commun; 2018 Mar; 498(1):92-98. PubMed ID: 29196259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana.
    Franz S; Ehlert B; Liese A; Kurth J; Cazalé AC; Romeis T
    Mol Plant; 2011 Jan; 4(1):83-96. PubMed ID: 20978086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the auto-inhibitory domain in Arabidopsis AtCPK1 leads to increased salt, cold and heat tolerance in the AtCPK1-transformed Rubia cordifolia L cell cultures.
    Veremeichik GN; Shkryl YN; Gorpenchenko TY; Silantieva SA; Avramenko TV; Brodovskaya EV; Bulgakov VP
    Plant Physiol Biochem; 2021 Feb; 159():372-382. PubMed ID: 33444896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family.
    Cheng SH; Willmann MR; Chen HC; Sheen J
    Plant Physiol; 2002 Jun; 129(2):469-85. PubMed ID: 12068094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.
    Weckwerth P; Ehlert B; Romeis T
    Plant Cell Environ; 2015 Mar; 38(3):544-58. PubMed ID: 25052912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis.
    Coca M; San Segundo B
    Plant J; 2010 Aug; 63(3):526-40. PubMed ID: 20497373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein.
    Rodriguez Milla MA; Uno Y; Chang IF; Townsend J; Maher EA; Quilici D; Cushman JC
    FEBS Lett; 2006 Feb; 580(3):904-11. PubMed ID: 16438971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.
    Dubrovina AS; Kiselev KV; Khristenko VS; Aleynova OA
    J Plant Physiol; 2015 Aug; 185():1-12. PubMed ID: 26264965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK).
    Liese A; Romeis T
    Biochim Biophys Acta; 2013 Jul; 1833(7):1582-9. PubMed ID: 23123193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene.
    Shkryl YN; Veremeichik GN; Makhazen DS; Silantieva SA; Mishchenko NP; Vasileva EA; Fedoreyev SA; Bulgakov VP
    Plant Cell Rep; 2016 Sep; 35(9):1907-16. PubMed ID: 27251124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts.
    Cheng SH; Sheen J; Gerrish C; Bolwell GP
    FEBS Lett; 2001 Aug; 503(2-3):185-8. PubMed ID: 11513879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling.
    Dutilleul C; Benhassaine-Kesri G; Demandre C; Rézé N; Launay A; Pelletier S; Renou JP; Zachowski A; Baudouin E; Guillas I
    New Phytol; 2012 Apr; 194(1):181-191. PubMed ID: 22236066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibodies against CKI1RD, a receiver domain of the sensor histidine kinase in Arabidopsis thaliana: from antigen preparation to in planta immunolocalization.
    Borkovcová P; Pekárová B; Válková M; Dopitová R; Brzobohatý B; Janda L; Hejátko J
    Phytochemistry; 2014 Apr; 100():6-15. PubMed ID: 24529575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitizing plant protein kinases to specific inhibition by ATP-competitive molecules.
    Salomon D; Zhang C; Shokat KM; Sessa G
    Methods Mol Biol; 2011; 779():185-97. PubMed ID: 21837567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.
    Dutilleul C; Chavarria H; Rézé N; Sotta B; Baudouin E; Guillas I
    Plant Cell Environ; 2015 Dec; 38(12):2688-97. PubMed ID: 26013074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical genetic analysis of protein kinase function in plants.
    Böhmer M; Bölker M; Romeis T
    Methods Mol Biol; 2011; 779():259-71. PubMed ID: 21837572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase.
    Wang X; Goshe MB; Soderblom EJ; Phinney BS; Kuchar JA; Li J; Asami T; Yoshida S; Huber SC; Clouse SD
    Plant Cell; 2005 Jun; 17(6):1685-703. PubMed ID: 15894717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phyloproteomic characterization of in vitro autophosphorylation in calcium-dependent protein kinases.
    Hegeman AD; Rodriguez M; Han BW; Uno Y; Phillips GN; Hrabak EM; Cushman JC; Harper JF; Harmon AC; Sussman MR
    Proteomics; 2006 Jun; 6(12):3649-64. PubMed ID: 16758442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.