These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17924530)

  • 1. Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons.
    Hasselmo ME; Giocomo LM; Zilli EA
    Hippocampus; 2007; 17(12):1252-71. PubMed ID: 17924530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An oscillatory interference model of grid cell firing.
    Burgess N; Barry C; O'Keefe J
    Hippocampus; 2007; 17(9):801-12. PubMed ID: 17598147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing.
    Giocomo LM; Zilli EA; Fransén E; Hasselmo ME
    Science; 2007 Mar; 315(5819):1719-22. PubMed ID: 17379810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission.
    Pilly PK; Grossberg S
    Front Neural Circuits; 2013; 7():173. PubMed ID: 24198762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cosine directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory interference.
    Welday AC; Shlifer IG; Bloom ML; Zhang K; Blair HT
    J Neurosci; 2011 Nov; 31(45):16157-76. PubMed ID: 22072668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
    Jeewajee A; Barry C; O'Keefe J; Burgess N
    Hippocampus; 2008; 18(12):1175-85. PubMed ID: 19021251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.
    Yoshida M; Giocomo LM; Boardman I; Hasselmo ME
    J Neurosci; 2011 Aug; 31(35):12683-94. PubMed ID: 21880929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grid cells and theta as oscillatory interference: theory and predictions.
    Burgess N
    Hippocampus; 2008; 18(12):1157-74. PubMed ID: 19021256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation by oscillations: implications of experimental data for theoretical models of grid cells.
    Giocomo LM; Hasselmo ME
    Hippocampus; 2008; 18(12):1186-99. PubMed ID: 19021252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex.
    Hasselmo ME
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120523. PubMed ID: 24366135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bat and rat neurons differ in theta-frequency resonance despite similar coding of space.
    Heys JG; MacLeod KM; Moss CF; Hasselmo ME
    Science; 2013 Apr; 340(6130):363-7. PubMed ID: 23599495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential dynamics of grid cells.
    Domnisoru C; Kinkhabwala AA; Tank DW
    Nature; 2013 Mar; 495(7440):199-204. PubMed ID: 23395984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting.
    Hasselmo ME
    Hippocampus; 2008; 18(12):1213-29. PubMed ID: 19021258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase precession of grid cells in a network model without external pacemaker.
    Thurley K; Hellmundt F; Leibold C
    Hippocampus; 2013 Sep; 23(9):786-96. PubMed ID: 23576429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grid cells without theta oscillations in the entorhinal cortex of bats.
    Yartsev MM; Witter MP; Ulanovsky N
    Nature; 2011 Nov; 479(7371):103-7. PubMed ID: 22051680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory.
    Hasselmo ME; Brandon MP
    Neural Plast; 2008; 2008():658323. PubMed ID: 18670635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells.
    Blair HT; Gupta K; Zhang K
    Hippocampus; 2008; 18(12):1239-55. PubMed ID: 19021259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2009 Jun; 29(23):7625-30. PubMed ID: 19515931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.