These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17924596)

  • 1. Carboxylate anion diminishes chloride transport through a synthetic, self-assembled transmembrane pore.
    You L; Ferdani R; Li R; Kramer JP; Winter RE; Gokel GW
    Chemistry; 2008; 14(1):382-96. PubMed ID: 17924596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminal ester of membrane anchored peptide ion channels affects anion transport.
    Djedovic N; Ferdani R; Harder E; Pajewska J; Pajewski R; Schlesinger PH; Gokel GW
    Chem Commun (Camb); 2003 Dec; (23):2862-3. PubMed ID: 14680212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride ion efflux from liposomes is controlled by sidechains in a channel-forming heptapeptide.
    You L; Ferdani R; Gokel GW
    Chem Commun (Camb); 2006 Feb; (6):603-5. PubMed ID: 16446823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of chloride and carboxyfluorescein through phospholipid vesicle membranes by heptapeptide amphiphiles.
    Ferdani R; Li R; Pajewski R; Pajewska J; Winter RK; Gokel GW
    Org Biomol Chem; 2007 Aug; 5(15):2423-32. PubMed ID: 17637962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent, synthetic amphiphilic heptapeptide anion transporters: evidence for self-assembly and membrane localization in liposomes.
    You L; Gokel GW
    Chemistry; 2008; 14(19):5861-70. PubMed ID: 18481800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation behavior and dynamics of synthetic amphiphiles that self-assemble to anion transporters.
    Elliott EK; Daschbach MM; Gokel GW
    Chemistry; 2008; 14(19):5871-9. PubMed ID: 18481801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for dimer formation by an amphiphilic heptapeptide that mediates chloride and carboxyfluorescein release from liposomes.
    Pajewski R; Ferdani R; Pajewska J; Djedovic N; Schlesinger PH; Gokel GW
    Org Biomol Chem; 2005 Feb; 3(4):619-25. PubMed ID: 15703797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and supramolecular membrane interactions that influence anion transport in tryptophan-containing synthetic peptides.
    Daschbach MM; Negin S; You L; Walsh M; Gokel GW
    Chemistry; 2012 Jun; 18(24):7608-23. PubMed ID: 22539255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Characterization of a Cation-Selective, Self-Assembled Peptide Pore in Planar Phospholipid Bilayers.
    Deplazes E; Hartmann LM; Cranfield CG; Garcia A
    J Phys Chem Lett; 2020 Oct; 11(19):8152-8156. PubMed ID: 32902292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic ion channels: from pores to biological applications.
    Gokel GW; Negin S
    Acc Chem Res; 2013 Dec; 46(12):2824-33. PubMed ID: 23738778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion transport properties of amine and amide-sidechained peptides are affected by charge and phospholipid composition.
    You L; Li R; Gokel GW
    Org Biomol Chem; 2008 Aug; 6(16):2914-23. PubMed ID: 18688484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.
    Hilder TA; Gordon D; Chung SH
    J Chem Phys; 2011 Jan; 134(4):045103. PubMed ID: 21280804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels.
    Chen J; Tomich JM
    Biochim Biophys Acta; 2014 Sep; 1838(9):2319-25. PubMed ID: 24582709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar bilayer studies reveal multiple conductance states for synthetic anion transporters.
    Ferdani R; Gokel GW
    Org Biomol Chem; 2006 Oct; 4(20):3746-50. PubMed ID: 17024277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligoether-strapped calix[4]pyrrole: an ion-pair receptor displaying cation-dependent chloride anion transport.
    Park IW; Yoo J; Kim B; Adhikari S; Kim SK; Yeon Y; Haynes CJ; Sutton JL; Tong CC; Lynch VM; Sessler JL; Gale PA; Lee CH
    Chemistry; 2012 Feb; 18(9):2514-23. PubMed ID: 22298258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C-H···Anion Interactions.
    Lisbjerg M; Valkenier H; Jessen BM; Al-Kerdi H; Davis AP; Pittelkow M
    J Am Chem Soc; 2015 Apr; 137(15):4948-51. PubMed ID: 25851041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic isophthalamides aggregate in lipid bilayers: evidence for a cooperative transport mechanism.
    Berry SN; Busschaert N; Frankling CL; Salter D; Gale PA
    Org Biomol Chem; 2015 Mar; 13(10):3136-43. PubMed ID: 25633557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and transmembrane anion/cation symport activity of a rigid bis(choloyl) conjugate functionalized with guanidino groups.
    Deng LQ; Li Z; Lu YM; Chen JX; Zhou CQ; Wang B; Chen WH
    Bioorg Med Chem Lett; 2015 Feb; 25(4):745-8. PubMed ID: 25616903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure.
    Reddy GL; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.