These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17924622)

  • 1. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
    Bravaya K; Bochenkova A; Granovsky A; Nemukhin A
    J Am Chem Soc; 2007 Oct; 129(43):13035-42. PubMed ID: 17924622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling photoabsorption of the asFP595 chromophore.
    Bravaya KB; Bochenkova AV; Granovsky AA; Savitsky AP; Nemukhin AV
    J Phys Chem A; 2008 Sep; 112(37):8804-10. PubMed ID: 18729441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the beta-ionone "handle" and alkyl group effect.
    Cembran A; Gonzalez-Luque R; Altoè P; Merchan M; Bernardi F; Olivucci M; Garavelli M
    J Phys Chem A; 2005 Jul; 109(29):6597-605. PubMed ID: 16834008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the molecular mechanism for color distinction in humans.
    Trabanino RJ; Vaidehi N; Goddard WA
    J Phys Chem B; 2006 Aug; 110(34):17230-9. PubMed ID: 16928022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
    Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V
    J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined QM/MM study of the opsin shift in bacteriorhodopsin.
    Rajamani R; Gao J
    J Comput Chem; 2002 Jan; 23(1):96-105. PubMed ID: 11913393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel retinylidene iminium salts for defining opsin shifts: synthesis and intrinsic chromophoric properties.
    Petersen MA; Nielsen IB; Kristensen MB; Kadziola A; Lammich L; Andersen LH; Nielsen MB
    Org Biomol Chem; 2006 Apr; 4(8):1546-54. PubMed ID: 16604223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the beta-ionone ring in the photochemical reaction of rhodopsin.
    Send R; Sundholm D
    J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.
    Lemaître V; Yeagle P; Watts A
    Biochemistry; 2005 Sep; 44(38):12667-80. PubMed ID: 16171381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal models: comparison of electronic absorption spectra in the gas phase and in methanol solution.
    Muñoz-Losa A; Fdez Galván I; Aguilar MA; Martín ME
    J Phys Chem B; 2008 Jul; 112(29):8815-23. PubMed ID: 18590305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the conformational state of the chromophore group (11-cis-retinal) in rhodopsin by computer molecular simulation methods].
    Fel'dman TB; Kholmurodov KhT; Ostrovskiĭ MA; Khrenova MG; Nemukhin AV
    Biofizika; 2009; 54(4):660-7. PubMed ID: 19795787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effects on the low-lying excited states of a model of retinal.
    Muñoz Losa A; Fdez Galván I; Martín ME; Aguilar MA
    J Phys Chem B; 2006 Sep; 110(36):18064-71. PubMed ID: 16956299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-state singlet manifold and oscillatory features of a nonatetraeniminium retinal chromophore model.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2003 Oct; 125(41):12509-19. PubMed ID: 14531695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling reaction routes from rhodopsin to bathorhodopsin.
    Khrenova MG; Bochenkova AV; Nemukhin AV
    Proteins; 2010 Feb; 78(3):614-22. PubMed ID: 19787771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.