These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17924644)

  • 21. Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags.
    Meagher RJ; Light YK; Singh AK
    Lab Chip; 2008 Apr; 8(4):527-32. PubMed ID: 18369506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated system for high-throughput protein production using the dialysis cell-free method.
    Aoki M; Matsuda T; Tomo Y; Miyata Y; Inoue M; Kigawa T; Yokoyama S
    Protein Expr Purif; 2009 Dec; 68(2):128-36. PubMed ID: 19664715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface modification of thermoplastics--towards the plastic biochip for high throughput screening devices.
    Diaz-Quijada GA; Peytavi R; Nantel A; Roy E; Bergeron MG; Dumoulin MM; Veres T
    Lab Chip; 2007 Jul; 7(7):856-62. PubMed ID: 17594004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a miniaturized fluid array device for cell-free protein synthesis.
    Jackson K; Jin S; Fan ZH
    Biotechnol Bioeng; 2015 Dec; 112(12):2459-67. PubMed ID: 26037852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein synthesis yield increased 72 times in the cell-free PURE system.
    Jackson K; Kanamori T; Ueda T; Fan ZH
    Integr Biol (Camb); 2014 Aug; 6(8):781-8. PubMed ID: 25008400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices.
    Yu L; Liu Y; Gan Y; Li CM
    Biosens Bioelectron; 2009 Jun; 24(10):2997-3002. PubMed ID: 19346122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-free expression of soluble and membrane proteins in an array device for drug screening.
    Khnouf R; Olivero D; Jin S; Coleman MA; Fan ZH
    Anal Chem; 2010 Aug; 82(16):7021-6. PubMed ID: 20666430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reproducibility and robustness of a real-time microfluidic cell toxicity assay.
    Cooksey GA; Elliott JT; Plant AL
    Anal Chem; 2011 May; 83(10):3890-6. PubMed ID: 21506521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    GarcĂ­a-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microfluidic cell array with individually addressable culture chambers.
    Wang HY; Bao N; Lu C
    Biosens Bioelectron; 2008 Dec; 24(4):613-7. PubMed ID: 18635348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous protein production in nanoporous, picolitre volume containers.
    Siuti P; Retterer ST; Doktycz MJ
    Lab Chip; 2011 Oct; 11(20):3523-9. PubMed ID: 21879140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of MEMS devices with optical apertures for the detection of transparent biological cells.
    Zhou X; Poenar DP; Liu KY; Tse MS; Heng CK; Tan SN
    Biomed Microdevices; 2008 Oct; 10(5):639-52. PubMed ID: 18443909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advantages of synthesizing trans-1,2-cyclohexanediol in a continuous flow microreactor over a standard glass apparatus.
    Hartung A; Keane MA; Kraft A
    J Org Chem; 2007 Dec; 72(26):10235-8. PubMed ID: 18001100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic device for label-free measurement of platelet activation.
    Inglis DW; Morton KJ; Davis JA; Zieziulewicz TJ; Lawrence DA; Austin RH; Sturm JC
    Lab Chip; 2008 Jun; 8(6):925-31. PubMed ID: 18497913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations.
    Zhang H; Yang X; Wang K; Tan W; Li H; Zuo X; Wen J
    Biosens Bioelectron; 2008 Feb; 23(7):945-51. PubMed ID: 17983740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic chip for detecting the expression of green fluorescent protein in Bacillus subtilis.
    Dong H; Fu J; Li Y; Jiang J
    Sheng Wu Gong Cheng Xue Bao; 2009 Jul; 25(7):1077-81. PubMed ID: 19835151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic cell electroporation using a mechanical valve.
    Wang J; Stine MJ; Lu C
    Anal Chem; 2007 Dec; 79(24):9584-7. PubMed ID: 18004820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.