These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 17924657)
1. Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282,000 by mutating an active site lid. Burrell MR; Just VJ; Bowater L; Fairhurst SA; Requena L; Lawson DM; Bornemann S Biochemistry; 2007 Oct; 46(43):12327-36. PubMed ID: 17924657 [TBL] [Abstract][Full Text] [Related]
2. The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations. Just VJ; Burrell MR; Bowater L; McRobbie I; Stevenson CE; Lawson DM; Bornemann S Biochem J; 2007 Nov; 407(3):397-406. PubMed ID: 17680775 [TBL] [Abstract][Full Text] [Related]
3. A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. Just VJ; Stevenson CE; Bowater L; Tanner A; Lawson DM; Bornemann S J Biol Chem; 2004 May; 279(19):19867-74. PubMed ID: 14871895 [TBL] [Abstract][Full Text] [Related]
4. EPR spin trapping of an oxalate-derived free radical in the oxalate decarboxylase reaction. Imaram W; Saylor BT; Centonze CP; Richards NG; Angerhofer A Free Radic Biol Med; 2011 Apr; 50(8):1009-15. PubMed ID: 21277974 [TBL] [Abstract][Full Text] [Related]
5. Multifrequency EPR studies on the Mn(II) centers of oxalate decarboxylase. Angerhofer A; Moomaw EW; García-Rubio I; Ozarowski A; Krzystek J; Weber RT; Richards NG J Phys Chem B; 2007 May; 111(19):5043-6. PubMed ID: 17444678 [TBL] [Abstract][Full Text] [Related]
7. Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymes. Scarpellini M; Gätjens J; Martin OJ; Kampf JW; Sherman SE; Pecoraro VL Inorg Chem; 2008 May; 47(9):3584-93. PubMed ID: 18399627 [TBL] [Abstract][Full Text] [Related]
8. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy. Muthusamy M; Burrell MR; Thorneley RN; Bornemann S Biochemistry; 2006 Sep; 45(35):10667-73. PubMed ID: 16939218 [TBL] [Abstract][Full Text] [Related]
9. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Zhu W; Easthon LM; Reinhardt LA; Tu C; Cohen SE; Silverman DN; Allen KN; Richards NG Biochemistry; 2016 Apr; 55(14):2163-73. PubMed ID: 27014926 [TBL] [Abstract][Full Text] [Related]
10. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. Reinhardt LA; Svedruzic D; Chang CH; Cleland WW; Richards NG J Am Chem Soc; 2003 Feb; 125(5):1244-52. PubMed ID: 12553826 [TBL] [Abstract][Full Text] [Related]
11. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: structural basis for catalytic promiscuity in wild-type and designed mutants of 3-keto-L-gulonate 6-phosphate decarboxylase. Wise EL; Yew WS; Akana J; Gerlt JA; Rayment I Biochemistry; 2005 Feb; 44(6):1816-23. PubMed ID: 15697207 [TBL] [Abstract][Full Text] [Related]
12. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
13. Engineering the substrate binding site of benzoylformate decarboxylase. Yep A; McLeish MJ Biochemistry; 2009 Sep; 48(35):8387-95. PubMed ID: 19621900 [TBL] [Abstract][Full Text] [Related]
14. Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution. Anand R; Dorrestein PC; Kinsland C; Begley TP; Ealick SE Biochemistry; 2002 Jun; 41(24):7659-69. PubMed ID: 12056897 [TBL] [Abstract][Full Text] [Related]
15. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Montoya A; Wisniewski M; Goodsell JL; Angerhofer A Molecules; 2024 Sep; 29(18):. PubMed ID: 39339409 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications. Cassland P; Sjöde A; Winestrand S; Jönsson LJ; Nilvebrant NO Appl Biochem Biotechnol; 2010 May; 161(1-8):255-63. PubMed ID: 19763895 [TBL] [Abstract][Full Text] [Related]
17. Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. Tanner A; Bowater L; Fairhurst SA; Bornemann S J Biol Chem; 2001 Nov; 276(47):43627-34. PubMed ID: 11546787 [TBL] [Abstract][Full Text] [Related]
18. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis. Twahir UT; Ozarowski A; Angerhofer A Biochemistry; 2016 Nov; 55(47):6505-6516. PubMed ID: 27797181 [TBL] [Abstract][Full Text] [Related]
19. Biochemical properties and oxalate-degrading activity of oxalate decarboxylase from bacillus subtilis at neutral pH. Conter C; Oppici E; Dindo M; Rossi L; Magnani M; Cellini B IUBMB Life; 2019 Jul; 71(7):917-927. PubMed ID: 30806021 [TBL] [Abstract][Full Text] [Related]
20. Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases. Escutia MR; Bowater L; Edwards A; Bottrill AR; Burrell MR; Polanco R; Vicuña R; Bornemann S Appl Environ Microbiol; 2005 Jul; 71(7):3608-16. PubMed ID: 16000768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]