BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17924666)

  • 1. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily.
    De Laurentis W; Khim L; Anderson JL; Adam A; Johnson KA; Phillips RS; Chapman SK; van Pee KH; Naismith JH
    Biochemistry; 2007 Oct; 46(43):12393-404. PubMed ID: 17924666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ternary complex of PrnB (the second enzyme in the pyrrolnitrin biosynthesis pathway), tryptophan, and cyanide yields new mechanistic insights into the indolamine dioxygenase superfamily.
    Zhu X; van Pée KH; Naismith JH
    J Biol Chem; 2010 Jul; 285(27):21126-33. PubMed ID: 20421301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens.
    Kirner S; Hammer PE; Hill DS; Altmann A; Fischer I; Weislo LJ; Lanahan M; van Pée KH; Ligon JM
    J Bacteriol; 1998 Apr; 180(7):1939-43. PubMed ID: 9537395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary crystallographic characterization of PrnB, the second enzyme in the pyrrolnitrin biosynthetic pathway.
    De Laurentis W; Leang K; Hahn K; Podemski B; Adam A; Kroschwald S; Carter LG; van Pee KH; Naismith JH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Nov; 62(Pt 11):1134-7. PubMed ID: 17077497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new regime of heme-dependent aromatic oxygenase superfamily.
    Shin I; Wang Y; Liu A
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34667125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of serine 167 in human indoleamine 2,3-dioxygenase: a comparison with tryptophan 2,3-dioxygenase.
    Chauhan N; Basran J; Efimov I; Svistunenko DA; Seward HE; Moody PC; Raven EL
    Biochemistry; 2008 Apr; 47(16):4761-9. PubMed ID: 18370410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase.
    Capece L; Arrar M; Roitberg AE; Yeh SR; Marti MA; Estrin DA
    Proteins; 2010 Nov; 78(14):2961-72. PubMed ID: 20715188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan oxygenation: mechanistic considerations.
    Naismith JH
    Biochem Soc Trans; 2012 Jun; 40(3):509-14. PubMed ID: 22616860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asp274 and his346 are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase.
    Littlejohn TK; Takikawa O; Truscott RJ; Walker MJ
    J Biol Chem; 2003 Aug; 278(32):29525-31. PubMed ID: 12766158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Reaction Intermediates in Tryptophan 2,3-Dioxygenase: A Comparison with Indoleamine 2,3-Dioxygenase.
    Basran J; Booth ES; Lee M; Handa S; Raven EL
    Biochemistry; 2016 Dec; 55(49):6743-6750. PubMed ID: 27951658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis.
    Zhang Y; Kang SA; Mukherjee T; Bale S; Crane BR; Begley TP; Ealick SE
    Biochemistry; 2007 Jan; 46(1):145-55. PubMed ID: 17198384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies.
    Capece L; Lewis-Ballester A; Batabyal D; Di Russo N; Yeh SR; Estrin DA; Marti MA
    J Biol Inorg Chem; 2010 Aug; 15(6):811-23. PubMed ID: 20361220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Tryptophan/Indoleamine 2,3-Dioxygenase with Heme Superoxide Mimics: Is Ferryl the Key Intermediate?
    Mondal P; Wijeratne GB
    J Am Chem Soc; 2020 Jan; 142(4):1846-1856. PubMed ID: 31870154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative aminopyrrolnitrin production by metabolically engineered Corynebacterium glutamicum.
    Putri VRM; Jung MH; Lee JY; Kwak MH; Mariyes TC; Kerbs A; Wendisch VF; Kong HJ; Kim YO; Lee JH
    Microb Cell Fact; 2024 May; 23(1):147. PubMed ID: 38783320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analyses of human tryptophan 2,3-dioxygenase.
    Meng B; Wu D; Gu J; Ouyang S; Ding W; Liu ZJ
    Proteins; 2014 Nov; 82(11):3210-6. PubMed ID: 25066423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Dec; 121(2):465-71. PubMed ID: 7264603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the reaction mechanism in the heme dioxygenases.
    Chauhan N; Thackray SJ; Rafice SA; Eaton G; Lee M; Efimov I; Basran J; Jenkins PR; Mowat CG; Chapman SK; Raven EL
    J Am Chem Soc; 2009 Apr; 131(12):4186-7. PubMed ID: 19275153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short history of heme dioxygenases: rise, fall and rise again.
    Raven EL
    J Biol Inorg Chem; 2017 Apr; 22(2-3):175-183. PubMed ID: 27909919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan 2,3-dioxygenase: a review of the roles of the heme and copper cofactors in catalysis.
    Brady FO
    Bioinorg Chem; 1975; 5(2):167-82. PubMed ID: 178384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.