These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17924695)
1. Energetics of the allyl group. Agapito F; Nunes PM; Cabral BJ; dos Santos RM; Simões JA J Org Chem; 2007 Nov; 72(23):8770-9. PubMed ID: 17924695 [TBL] [Abstract][Full Text] [Related]
2. Enthalpy of formation of the cyclopentadienyl radical: photoacoustic calorimetry and ab initio studies. Nunes PM; Agapito F; Costa Cabral BJ; Borges dos Santos RM; Martinho Simões JA J Phys Chem A; 2006 Apr; 110(15):5130-4. PubMed ID: 16610835 [TBL] [Abstract][Full Text] [Related]
3. C-H bond dissociation enthalpies in norbornane. An experimental and computational study. Nunes PM; Estacio SG; Lopes GT; Costa Cabral BJ; Borges dos Santos RM; Martinho Simões JA Org Lett; 2008 Apr; 10(8):1613-6. PubMed ID: 18348570 [TBL] [Abstract][Full Text] [Related]
4. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. Feng Y; Liu L; Wang JT; Huang H; Guo QX J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451 [TBL] [Abstract][Full Text] [Related]
5. Energetic differences between the five- and six-membered ring hydrocarbons: strain energies in the parent and radical molecules. Agapito F; Nunes PM; Costa Cabral BJ; Borges dos Santos RM; Martinho Simões JA J Org Chem; 2008 Aug; 73(16):6213-23. PubMed ID: 18651776 [TBL] [Abstract][Full Text] [Related]
6. Enthalpy of formation of the cyclohexadienyl radical and the C-H bond enthalpy of 1,4-cyclohexadiene: an experimental and computational re-evaluation. Gao Y; DeYonker NJ; Garrett EC; Wilson AK; Cundari TR; Marshall P J Phys Chem A; 2009 Jun; 113(25):6955-63. PubMed ID: 19489549 [TBL] [Abstract][Full Text] [Related]
7. Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate. El-Nahas AM; Navarro MV; Simmie JM; Bozzelli JW; Curran HJ; Dooley S; Metcalfe W J Phys Chem A; 2007 May; 111(19):3727-39. PubMed ID: 17286391 [TBL] [Abstract][Full Text] [Related]
8. Energetics of hydroxybenzoic acids and of the corresponding carboxyphenoxyl radicals. Intramolecular hydrogen bonding in 2-hydroxybenzoic acid. Pinto SS; Diogo HP; Guedes RC; Costa Cabral BJ; Minas da Piedade ME; Martinho Simões JA J Phys Chem A; 2005 Oct; 109(42):9700-8. PubMed ID: 16866422 [TBL] [Abstract][Full Text] [Related]
9. Combustion pathways of the alkylated heteroaromatics: bond dissociation enthalpies and alkyl group fragmentations. Hayes CJ; Hadad CM J Phys Chem A; 2009 Nov; 113(45):12370-9. PubMed ID: 19405499 [TBL] [Abstract][Full Text] [Related]
10. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378 [TBL] [Abstract][Full Text] [Related]
11. Energetics of C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols. enthalpies of formation of XCH(2)CH(2)OH (X = F, Cl, Br, I) compounds and of the 2-hydroxyethyl radical. Bernardes CE; Minas da Piedade ME; Amaral LM; Ferreira AI; Ribeiro da Silva MA; Diogo HP; Costa Cabral BJ J Phys Chem A; 2007 Mar; 111(9):1713-20. PubMed ID: 17288411 [TBL] [Abstract][Full Text] [Related]
12. Energetics of cresols and of methylphenoxyl radicals. Richard LS; Bernardes CE; Diogo HP; Leal JP; da Piedade ME J Phys Chem A; 2007 Sep; 111(35):8741-8. PubMed ID: 17691757 [TBL] [Abstract][Full Text] [Related]
13. Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals. Wood GP; Moran D; Jacob R; Radom L J Phys Chem A; 2005 Jul; 109(28):6318-25. PubMed ID: 16833974 [TBL] [Abstract][Full Text] [Related]
14. Quantum chemical modeling of propene and butene epoxidation with hydrogen peroxide. Lundin A; Panas I; Ahlberg E J Phys Chem A; 2009 Jan; 113(1):282-90. PubMed ID: 19072168 [TBL] [Abstract][Full Text] [Related]
15. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation. Ess DH; Hayden AE; Klärner FG; Houk KN J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823 [TBL] [Abstract][Full Text] [Related]
16. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals. da Silva G; Bozzelli JW J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166 [TBL] [Abstract][Full Text] [Related]
17. Ab initio calculations on halogen-bonded complexes and comparison with density functional methods. Lu YX; Zou JW; Fan JC; Zhao WN; Jiang YJ; Yu QS J Comput Chem; 2009 Apr; 30(5):725-32. PubMed ID: 18727160 [TBL] [Abstract][Full Text] [Related]
18. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
19. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols. Simmie JM; Curran HJ J Phys Chem A; 2009 Jul; 113(27):7834-45. PubMed ID: 19518123 [TBL] [Abstract][Full Text] [Related]
20. O-H bond dissociation enthalpies of oximes: a theoretical assessment and experimental implications. Chong SS; Fu Y; Liu L; Guo QX J Phys Chem A; 2007 Dec; 111(50):13112-25. PubMed ID: 18034467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]