These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17924718)

  • 1. Final and peak epidemic sizes for SEIR models with quarantine and isolation.
    Feng Z
    Math Biosci Eng; 2007 Oct; 4(4):675-86. PubMed ID: 17924718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness.
    Yan P; Feng Z
    Math Biosci; 2010 Mar; 224(1):43-52. PubMed ID: 20043927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemiological models with non-exponentially distributed disease stages and applications to disease control.
    Feng Z; Xu D; Zhao H
    Bull Math Biol; 2007 Jul; 69(5):1511-36. PubMed ID: 17237913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluations of Interventions Using Mathematical Models with Exponential and Non-exponential Distributions for Disease Stages: The Case of Ebola.
    Wang X; Shi Y; Feng Z; Cui J
    Bull Math Biol; 2017 Sep; 79(9):2149-2173. PubMed ID: 28721471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integral equation model for the control of a smallpox outbreak.
    Aldis GK; Roberts MG
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A path-specific SEIR model for use with general latent and infectious time distributions.
    Porter AT; Oleson JJ
    Biometrics; 2013 Mar; 69(1):101-8. PubMed ID: 23323602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease.
    Sang Z; Qiu Z; Yan X; Zou Y
    Math Biosci Eng; 2012 Jan; 9(1):147-64. PubMed ID: 22229401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation versus quarantine and alternative measures to control emerging infectious diseases.
    Al-Ateeg FA
    Saudi Med J; 2004 Oct; 25(10):1337-46. PubMed ID: 15494798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluations of heterogeneous epidemic models with exponential and non-exponential distributions for latent period: the Case of COVID-19.
    Zang H; Liu S; Lin Y
    Math Biosci Eng; 2023 May; 20(7):12579-12598. PubMed ID: 37501456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0.
    Huang SZ
    Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putting the Law Into Practice: A Comparison of Isolation and Quarantine As Tools to Control Tuberculosis and Ebola.
    Hershey TB; Pryde JA; Mwaungulu GS; Phifer VI; Roszak AR
    J Public Health Manag Pract; 2017; 23(2):e25-e31. PubMed ID: 26523801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of emerging infectious diseases using responsive imperfect vaccination and isolation.
    Ball FG; Knock ES; O'Neill PD
    Math Biosci; 2008 Nov; 216(1):100-13. PubMed ID: 18789951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evaluation of the effect of varicella outbreak control measures through a discrete time delay SEIR model].
    Pan JR; Huang ZQ; Chen K
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Apr; 46(4):343-7. PubMed ID: 22800634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal intervention for an epidemic model under parameter uncertainty.
    Clancy D; Green N
    Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete epidemic models with arbitrary stage distributions and applications to disease control.
    Hernandez-Ceron N; Feng Z; Castillo-Chavez C
    Bull Math Biol; 2013 Oct; 75(10):1716-46. PubMed ID: 23797790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Final epidemic size and critical times for susceptible-infectious-recovered models with a generalized contact rate.
    Gao W; Wang Y; Cao J; Liu Y
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38294886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the infection period distribution on the epidemic spread in a metapopulation model.
    Vergu E; Busson H; Ezanno P
    PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some results for an SEIR epidemic model with density dependence in the death rate.
    Greenhalgh D
    IMA J Math Appl Med Biol; 1992; 9(2):67-106. PubMed ID: 1517675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of prevention and quarantine on a breakout in SIR model.
    Kato F; Tainaka K; Sone S; Morita S; Iida H; Yoshimura J
    Sci Rep; 2011; 1():10. PubMed ID: 22355529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.