BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17924965)

  • 1. Influence of biodegradable and non-biodegradable material surfaces on the differentiation of human monocyte-derived macrophages.
    Dinnes DL; Santerre JP; Labow RS
    Differentiation; 2008 Mar; 76(3):232-44. PubMed ID: 17924965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage.
    McBane JE; Matheson LA; Sharifpoor S; Santerre JP; Labow RS
    Biomaterials; 2009 Oct; 30(29):5497-504. PubMed ID: 19635633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human macrophage response during differentiation and biodegradation on polycarbonate-based polyurethanes: dependence on hard segment chemistry.
    Labow RS; Sa D; Matheson LA; Dinnes DL; Santerre JP
    Biomaterials; 2005 Dec; 26(35):7357-66. PubMed ID: 16005062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane: Two-dimensional films vs. three-dimensional scaffolds.
    McBane JE; Ebadi D; Sharifpoor S; Labow RS; Santerre JP
    Acta Biomater; 2011 Jan; 7(1):115-22. PubMed ID: 20728587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material surfaces affect the protein expression patterns of human macrophages: A proteomics approach.
    Dinnes DL; Marçal H; Mahler SM; Santerre JP; Labow RS
    J Biomed Mater Res A; 2007 Mar; 80(4):895-908. PubMed ID: 17072854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro response of monocyte-derived macrophages to a decellularized pericardial biomaterial.
    Ariganello MB; Labow RS; Lee JM
    J Biomed Mater Res A; 2010 Apr; 93(1):280-8. PubMed ID: 19562747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular phospholipase A2 expression and location in human macrophages: influence of synthetic material surface chemistry.
    Dinnes DL; Santerre JP; Labow RS
    J Cell Physiol; 2008 Jan; 214(1):136-44. PubMed ID: 17565722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of macrophage-like U937 cells to decellularized tissue heart valve materials.
    Ariganello MB; Labow RS; Lee JM
    J Heart Valve Dis; 2009 Mar; 18(2):187-97. PubMed ID: 19455894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages.
    Labow RS; Meek E; Santerre JP
    Biomaterials; 2001 Nov; 22(22):3025-33. PubMed ID: 11575477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation.
    McBane JE; Santerre JP; Labow RS
    J Biomed Mater Res A; 2007 Sep; 82(4):984-94. PubMed ID: 17335034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE).
    Ainslie KM; Bachelder EM; Borkar S; Zahr AS; Sen A; Badding JV; Pishko MV
    Langmuir; 2007 Jan; 23(2):747-54. PubMed ID: 17209629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phorbol esters on the macrophage-mediated biodegradation of polyurethanes via protein kinase C activation and other pathways.
    McBane JE; Santerre JP; Labow R
    J Biomater Sci Polym Ed; 2009; 20(4):437-53. PubMed ID: 19228446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of phorbol ester activation and reactive oxygen species scavengers on the macrophage-mediated foreign body reaction to polyurethanes.
    McBane JE; Matheson LA; Santerre JP; Labow RS
    J Biomed Mater Res A; 2009 Dec; 91(4):1150-9. PubMed ID: 19148928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of cytoskeletal and contractile elements during transition of human monocytes into adherent macrophages.
    Lehto VP; Hovi T; Vartio T; Badley RA; Virtanen I
    Lab Invest; 1982 Oct; 47(4):391-9. PubMed ID: 6811799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes.
    Shen M; Garcia I; Maier RV; Horbett TA
    J Biomed Mater Res A; 2004 Sep; 70(4):533-41. PubMed ID: 15307157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities.
    Matheson LA; Maksym GN; Santerre JP; Labow RS
    J Biomed Mater Res A; 2006 Jan; 76(1):52-62. PubMed ID: 16224781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokine regulation of human monocyte differentiation in vitro: the tumor-cytotoxic phenotype induced by macrophage colony-stimulating factor is developmentally regulated by gamma-interferon.
    Munn DH; Armstrong E
    Cancer Res; 1993 Jun; 53(11):2603-13. PubMed ID: 8495423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphocytes and the foreign body response: lymphocyte enhancement of macrophage adhesion and fusion.
    Brodbeck WG; Macewan M; Colton E; Meyerson H; Anderson JM
    J Biomed Mater Res A; 2005 Aug; 74(2):222-9. PubMed ID: 15948198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells.
    McBane JE; Battiston KG; Wadhwani A; Sharifpoor S; Labow RS; Santerre JP
    Biomaterials; 2011 May; 32(14):3584-95. PubMed ID: 21345489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of met proto-oncogene (hepatocyte growth factor receptor) expression during human monocyte-macrophage differentiation.
    Chen Q; DeFrances MC; Zarnegar R
    Cell Growth Differ; 1996 Jun; 7(6):821-32. PubMed ID: 8780895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.