BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17925032)

  • 1. Quantum dot imaging for embryonic stem cells.
    Lin S; Xie X; Patel MR; Yang YH; Li Z; Cao F; Gheysens O; Zhang Y; Gambhir SS; Rao JH; Wu JC
    BMC Biotechnol; 2007 Oct; 7():67. PubMed ID: 17925032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation or excretion of quantum dots in mouse embryonic stem cells.
    Pi QM; Zhang WJ; Zhou GD; Liu W; Cao Y
    BMC Biotechnol; 2010 May; 10():36. PubMed ID: 20444290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Human Skin-Derived Stem Cell Characteristics After Non-Invasive Quantum Dot Labeling.
    Benzin H; Schumann S; Richter A; Kier J; Kruse C; Matthiessen AE
    Cell Physiol Biochem; 2021 Jul; 55(4):387-399. PubMed ID: 34214388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo quantum dot labeling of mammalian stem and progenitor cells.
    Slotkin JR; Chakrabarti L; Dai HN; Carney RS; Hirata T; Bregman BS; Gallicano GI; Corbin JG; Haydar TF
    Dev Dyn; 2007 Dec; 236(12):3393-401. PubMed ID: 17626285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots.
    van Manen HJ; Otto C
    Nano Lett; 2007 Jun; 7(6):1631-6. PubMed ID: 17474784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeling of mesenchymal stem cells by bioconjugated quantum dots.
    Shah BS; Clark PA; Moioli EK; Stroscio MA; Mao JJ
    Nano Lett; 2007 Oct; 7(10):3071-9. PubMed ID: 17887799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Dots Do Not Alter the Differentiation Potential of Pancreatic Stem Cells and Are Distributed Randomly among Daughter Cells.
    Danner S; Benzin H; Vollbrandt T; Oder J; Richter A; Kruse C
    Int J Cell Biol; 2013; 2013():918242. PubMed ID: 23997768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy.
    Voura EB; Jaiswal JK; Mattoussi H; Simon SM
    Nat Med; 2004 Sep; 10(9):993-8. PubMed ID: 15334072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of fluorescent nanoparticle-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection.
    Grady ST; Britton L; Hinrichs K; Nixon AJ; Watts AE
    J Tissue Eng Regen Med; 2019 Feb; 13(2):191-202. PubMed ID: 30536848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic quantum dot-labeled B16F10 murine melanoma cells as a tool to monitor early steps of lung metastasis by in vivo imaging.
    Díaz-García VM; Guerrero S; Díaz-Valdivia N; Lobos-González L; Kogan M; Pérez-Donoso JM; Quest AF
    Int J Nanomedicine; 2018; 13():6391-6412. PubMed ID: 30410327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dots do not affect the behaviour of mouse embryonic stem cells and kidney stem cells and are suitable for short-term tracking.
    Rak-Raszewska A; Marcello M; Kenny S; Edgar D; Sée V; Murray P
    PLoS One; 2012; 7(3):e32650. PubMed ID: 22403689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue.
    Shuhendler AJ; Prasad P; Chan HK; Gordijo CR; Soroushian B; Kolios M; Yu K; O'Brien PJ; Rauth AM; Wu XY
    ACS Nano; 2011 Mar; 5(3):1958-66. PubMed ID: 21338075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [In-vivo targeted imaging of hepatocellular carcinoma in nude mice using quantum dot probes].
    Chen LD; Liu J; Yu XF; Pang DW; Wang QQ; Yuan HY; Tang ZY; Li Y
    Zhonghua Bing Li Xue Za Zhi; 2007 Jun; 36(6):394-9. PubMed ID: 17822625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking.
    Zhang LJ; Wang S; Xia L; Lv C; Tang HW; Liang Z; Xiao G; Pang DW
    mBio; 2020 May; 11(3):. PubMed ID: 32430465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-based, quantitative, and multiplexed assay for tissue staining.
    Xu H; Xu J; Wang X; Wu D; Chen ZG; Wang AY
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2901-7. PubMed ID: 23551017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo fluorescence imaging of the reticuloendothelial system using quantum dots in combination with bioluminescent tumour monitoring.
    Inoue Y; Izawa K; Yoshikawa K; Yamada H; Tojo A; Ohtomo K
    Eur J Nucl Med Mol Imaging; 2007 Dec; 34(12):2048-56. PubMed ID: 17885753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent approach for visually observing quantum dot uptake in living organisms.
    Kim SW; Kwak JI; An YJ
    Chemosphere; 2016 Feb; 144():1763-70. PubMed ID: 26524145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Cancer Dual-Targeting and Dual-Modality Imaging with Functionalized Quantum Dots.
    Hu K; Wang H; Tang G; Huang T; Tang X; Liang X; Yao S; Nie D
    J Nucl Med; 2015 Aug; 56(8):1278-84. PubMed ID: 26112023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeling of mesenchymal stem cells with bioconjugated quantum dots.
    Shah BS; Mao JJ
    Methods Mol Biol; 2011; 680():61-75. PubMed ID: 21153373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced fluorescence from semiconductor quantum dot-labelled cells excited at 280 nm.
    McFarlane M; Hall N; McConnell G
    Methods Appl Fluoresc; 2022 Mar; 10(2):. PubMed ID: 35203075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.