These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17925261)

  • 1. Computing movement geometry: a step in sensory-motor transformations.
    Zipser D; Torres E
    Prog Brain Res; 2007; 165():411-24. PubMed ID: 17925261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB; Zipser D
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory signals during active versus passive movement.
    Cullen KE
    Curr Opin Neurobiol; 2004 Dec; 14(6):698-706. PubMed ID: 15582371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements.
    Buneo CA; Andersen RA
    Neuropsychologia; 2006; 44(13):2594-606. PubMed ID: 16300804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving Bernstein's problem: a proposal for the development of coordinated movement by selection.
    Sporns O; Edelman GM
    Child Dev; 1993 Aug; 64(4):960-81. PubMed ID: 8404271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles.
    Tanaka H; Tai M; Qian N
    Neural Comput; 2004 Oct; 16(10):2021-40. PubMed ID: 15333205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parabolic movement primitives and cortical states: merging optimality with geometric invariance.
    Polyakov F; Stark E; Drori R; Abeles M; Flash T
    Biol Cybern; 2009 Feb; 100(2):159-84. PubMed ID: 19152065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common reference frame for movement plans in the posterior parietal cortex.
    Cohen YE; Andersen RA
    Nat Rev Neurosci; 2002 Jul; 3(7):553-62. PubMed ID: 12094211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements.
    Kalveram KT; Seyfarth A
    J Physiol Paris; 2009; 103(3-5):232-43. PubMed ID: 19665562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement curvature planning through force field internal models.
    Petreska B; Billard A
    Biol Cybern; 2009 May; 100(5):331-50. PubMed ID: 19381682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S; Berger M; Molokanova E; Holzmueller G; Wirtenberger W; Lechner-Steinleitner S; De Col C; Kozlovskaya I; Gerstenbrand F
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit online corrections of reaching movements.
    Gomi H
    Curr Opin Neurobiol; 2008 Dec; 18(6):558-64. PubMed ID: 19095435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model.
    Pham QC; Hicheur H; Arechavaleta G; Laumond JP; Berthoz A
    Eur J Neurosci; 2007 Oct; 26(8):2391-403. PubMed ID: 17953626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement interference during action observation as emergent coordination.
    Richardson MJ; Campbell WL; Schmidt RC
    Neurosci Lett; 2009 Jan; 449(2):117-22. PubMed ID: 18996439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhythmic arm movement is not discrete.
    Schaal S; Sternad D; Osu R; Kawato M
    Nat Neurosci; 2004 Oct; 7(10):1136-43. PubMed ID: 15452580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.