These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17925261)

  • 21. Computational motor control: redundancy and invariance.
    Guigon E; Baraduc P; Desmurget M
    J Neurophysiol; 2007 Jan; 97(1):331-47. PubMed ID: 17005621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
    Yekutieli Y; Sagiv-Zohar R; Aharonov R; Engel Y; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1443-58. PubMed ID: 15829594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reference frame conversions for repeated arm movements.
    Sorrento GU; Henriques DY
    J Neurophysiol; 2008 Jun; 99(6):2968-84. PubMed ID: 18400956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems.
    Porrill J; Dean P
    Neural Comput; 2007 Jan; 19(1):170-93. PubMed ID: 17134321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl.
    Masino T; Knudsen EI
    Nature; 1990 May; 345(6274):434-7. PubMed ID: 2342573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom.
    Page A; Galvez JA; de Rosario H; Mata V; Prat J
    J Biomech; 2010 Jan; 43(2):375-8. PubMed ID: 19892357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Movement variability resulting from different noise sources: a simulation study.
    Shi Y; Buneo CA
    Hum Mov Sci; 2012 Aug; 31(4):772-90. PubMed ID: 22795761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Error correction, sensory prediction, and adaptation in motor control.
    Shadmehr R; Smith MA; Krakauer JW
    Annu Rev Neurosci; 2010; 33():89-108. PubMed ID: 20367317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the use of musculoskeletal models to interpret motor control strategies from performance data.
    Cheng EJ; Loeb GE
    J Neural Eng; 2008 Jun; 5(2):232-53. PubMed ID: 18506076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of viscous loads on motor planning.
    Thoroughman KA; Wang W; Tomov DN
    J Neurophysiol; 2007 Aug; 98(2):870-7. PubMed ID: 17522176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of force and impedance in human arm movements.
    Tee KP; Burdet E; Chew CM; Milner TE
    Biol Cybern; 2004 May; 90(5):368-75. PubMed ID: 15221397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic invariants during cyclical arm movements.
    Dounskaia N
    Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas.
    Rozzi S; Ferrari PF; Bonini L; Rizzolatti G; Fogassi L
    Eur J Neurosci; 2008 Oct; 28(8):1569-88. PubMed ID: 18691325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computation and physiology of sensory-motor processing in eye movements.
    Osborne LC
    Curr Opin Neurobiol; 2011 Aug; 21(4):623-8. PubMed ID: 21689922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neural network model for the acquisition of a spatial body scheme through sensorimotor interaction.
    Roschin VY; Frolov AA; Burnod Y; Maier MA
    Neural Comput; 2011 Jul; 23(7):1821-34. PubMed ID: 21492015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational motor control: feedback and accuracy.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2008 Feb; 27(4):1003-16. PubMed ID: 18279368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments.
    Green AM; Angelaki DE
    Prog Brain Res; 2007; 165():155-80. PubMed ID: 17925245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A state-space analysis for reconstruction of goal-directed movements using neural signals.
    Srinivasan L; Eden UT; Willsky AS; Brown EN
    Neural Comput; 2006 Oct; 18(10):2465-94. PubMed ID: 16907633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.