These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17925278)

  • 1. A supertree of temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods.
    Ruta M; Pisani D; Lloyd GT; Benton MJ
    Proc Biol Sci; 2007 Dec; 274(1629):3087-95. PubMed ID: 17925278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change.
    Ruta M; Wagner PJ; Coates MI
    Proc Biol Sci; 2006 Sep; 273(1598):2107-11. PubMed ID: 16901828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taxonomic and ecomorphological diversity of temnospondyl amphibians across the Permian-Triassic boundary in the Karoo Basin (South Africa).
    Tarailo DA
    J Morphol; 2018 Dec; 279(12):1840-1848. PubMed ID: 30397933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods.
    Fortuny J; Marcé-Nogué J; DE Esteban-Trivigno S; Gil L; Galobart Á
    J Evol Biol; 2011 Sep; 24(9):2040-54. PubMed ID: 21707813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global patterns of diversification in the history of modern amphibians.
    Roelants K; Gower DJ; Wilkinson M; Loader SP; Biju SD; Guillaume K; Moriau L; Bossuyt F
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):887-92. PubMed ID: 17213318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many hexapod groups originated earlier and withstood extinction events better than previously realized: inferences from supertrees.
    Davis RB; Baldauf SL; Mayhew PJ
    Proc Biol Sci; 2010 May; 277(1687):1597-606. PubMed ID: 20129983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches.
    Baker WJ; Savolainen V; Asmussen-Lange CB; Chase MW; Dransfield J; Forest F; Harley MM; Uhl NW; Wilkinson M
    Syst Biol; 2009 Apr; 58(2):240-56. PubMed ID: 20525581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.
    Anderson JS; Reisz RR; Scott D; Fröbisch NB; Sumida SS
    Nature; 2008 May; 453(7194):515-8. PubMed ID: 18497824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A supertree of early tetrapods.
    Ruta M; Jeffery JE; Coates MI
    Proc Biol Sci; 2003 Dec; 270(1532):2507-16. PubMed ID: 14667343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of flip supertree construction with a heuristic algorithm.
    Eulenstein O; Chen D; Burleigh JG; Fernández-Baca D; Sanderson MJ
    Syst Biol; 2004 Apr; 53(2):299-308. PubMed ID: 15205054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods.
    Bernardi M; Angielczyk KD; Mitchell JS; Ruta M
    Syst Biol; 2016 Sep; 65(5):737-58. PubMed ID: 27288479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.
    Reisz RR; Schoch RR; Anderson JS
    Naturwissenschaften; 2009 Jul; 96(7):789-96. PubMed ID: 19347261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution.
    Romano C; Koot MB; Kogan I; Brayard A; Minikh AV; Brinkmann W; Bucher H; Kriwet J
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):106-47. PubMed ID: 25431138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early tetrapod relationships revisited.
    Ruta M; Coates MI; Quicke DL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):251-345. PubMed ID: 12803423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robinson-Foulds supertrees.
    Bansal MS; Burleigh JG; Eulenstein O; Fernández-Baca D
    Algorithms Mol Biol; 2010 Feb; 5():18. PubMed ID: 20181274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Split-based computation of majority-rule supertrees.
    Kupczok A
    BMC Evol Biol; 2011 Jul; 11():205. PubMed ID: 21752249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative performance of supertree algorithms in large data sets using the soapberry family (Sapindaceae) as a case study.
    Buerki S; Forest F; Salamin N; Alvarez N
    Syst Biol; 2011 Jan; 60(1):32-44. PubMed ID: 21068445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Extinction Rates as a Trigger for Diversification Rate Shifts: Early Amniotes as a Case Study.
    Brocklehurst N; Ruta M; Müller J; Fröbisch J
    Sci Rep; 2015 Nov; 5():17104. PubMed ID: 26592209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital malformations of the vertebral column in ancient amphibians.
    Witzmann F; Rothschild BM; Hampe O; Sobral G; Gubin YM; Asbach P
    Anat Histol Embryol; 2014 Apr; 43(2):90-102. PubMed ID: 23551141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea.
    Sidor CA; O'Keefe FR; Damiani R; Steyer JS; Smith RM; Larsson HC; Sereno PC; Ide O; Maga A
    Nature; 2005 Apr; 434(7035):886-9. PubMed ID: 15829962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.