These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1137 related articles for article (PubMed ID: 17925454)

  • 1. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction.
    Raney MA; Yee AJ; Todd MK; Turcotte LP
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E592-8. PubMed ID: 15547141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion.
    Christopher M; Rantzau C; Chen ZP; Snow R; Kemp B; Alford FP
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1131-40. PubMed ID: 16772328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice.
    Thomson DM; Porter BB; Tall JH; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E196-202. PubMed ID: 16926377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N; Schertzer JD; Ryall JG; Steel R; Macaulay SL; Wee S; Chen ZP; Michell BJ; Oakhill JS; Watt MJ; Jørgensen SB; Lynch GS; Kemp BE; Steinberg GR
    J Physiol; 2008 Dec; 586(23):5819-31. PubMed ID: 18845612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity.
    Janovská A; Hatzinikolas G; Staikopoulos V; McInerney J; Mano M; Wittert GA
    Mol Cell Endocrinol; 2008 Mar; 284(1-2):1-10. PubMed ID: 18255222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1.
    Lee WJ; Kim M; Park HS; Kim HS; Jeon MJ; Oh KS; Koh EH; Won JC; Kim MS; Oh GT; Yoon M; Lee KU; Park JY
    Biochem Biophys Res Commun; 2006 Feb; 340(1):291-5. PubMed ID: 16364253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
    Sakamoto K; Göransson O; Hardie DG; Alessi DR
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment.
    Steinberg GR; Rush JW; Dyck DJ
    Am J Physiol Endocrinol Metab; 2003 Mar; 284(3):E648-54. PubMed ID: 12441311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle.
    Merrill GF; Kurth EJ; Rasmussen BB; Winder WW
    J Appl Physiol (1985); 1998 Nov; 85(5):1909-14. PubMed ID: 9804598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.
    Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonyl-CoA decarboxylase is not a substrate of AMP-activated protein kinase in rat fast-twitch skeletal muscle or an islet cell line.
    Habinowski SA; Hirshman M; Sakamoto K; Kemp BE; Gould SJ; Goodyear LJ; Witters LA
    Arch Biochem Biophys; 2001 Dec; 396(1):71-9. PubMed ID: 11716464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK stimulation increases LCFA but not glucose clearance in cardiac muscle in vivo.
    Shearer J; Fueger PT; Rottman JN; Bracy DP; Martin PH; Wasserman DH
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E871-7. PubMed ID: 15265760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated.
    Winder WW; Holmes BF
    J Appl Physiol (1985); 2000 Dec; 89(6):2430-7. PubMed ID: 11090599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the atypical protein kinase Czeta in regulation of 5'-AMP-activated protein kinase in cardiac and skeletal muscle.
    Ussher JR; Jaswal JS; Wagg CS; Armstrong HE; Lopaschuk DG; Keung W; Lopaschuk GD
    Am J Physiol Endocrinol Metab; 2009 Aug; 297(2):E349-57. PubMed ID: 19625676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
    Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.