These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Folmes CD; Lopaschuk GD Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822 [TBL] [Abstract][Full Text] [Related]
23. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Kaushik VK; Young ME; Dean DJ; Kurowski TG; Saha AK; Ruderman NB Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E335-40. PubMed ID: 11440910 [TBL] [Abstract][Full Text] [Related]
24. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle. Dobrzyn A; Dobrzyn P; Lee SH; Miyazaki M; Cohen P; Asilmaz E; Hardie DG; Friedman JM; Ntambi JM Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E599-607. PubMed ID: 15562249 [TBL] [Abstract][Full Text] [Related]
25. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. Onay-Besikci A; Sambandam N Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986 [TBL] [Abstract][Full Text] [Related]
26. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Jørgensen SB; Treebak JT; Viollet B; Schjerling P; Vaulont S; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E331-9. PubMed ID: 16954334 [TBL] [Abstract][Full Text] [Related]
27. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Bonen A; Han XX; Habets DD; Febbraio M; Glatz JF; Luiken JJ Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1740-9. PubMed ID: 17264223 [TBL] [Abstract][Full Text] [Related]
28. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Kraegen EW; Saha AK; Preston E; Wilks D; Hoy AJ; Cooney GJ; Ruderman NB Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E471-9. PubMed ID: 16234268 [TBL] [Abstract][Full Text] [Related]
29. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258 [TBL] [Abstract][Full Text] [Related]
30. Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes. Sakoda H; Ogihara T; Anai M; Fujishiro M; Ono H; Onishi Y; Katagiri H; Abe M; Fukushima Y; Shojima N; Inukai K; Kikuchi M; Oka Y; Asano T Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1239-44. PubMed ID: 12006353 [TBL] [Abstract][Full Text] [Related]
31. The effect of AMP-activated protein kinase and its activator AICAR on the metabolism of human umbilical vein endothelial cells. Dagher Z; Ruderman N; Tornheim K; Ido Y Biochem Biophys Res Commun; 1999 Nov; 265(1):112-5. PubMed ID: 10548499 [TBL] [Abstract][Full Text] [Related]
32. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872 [TBL] [Abstract][Full Text] [Related]
33. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373 [TBL] [Abstract][Full Text] [Related]
34. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Dagher Z; Ruderman N; Tornheim K; Ido Y Circ Res; 2001 Jun; 88(12):1276-82. PubMed ID: 11420304 [TBL] [Abstract][Full Text] [Related]
35. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. LeBrasseur NK; Kelly M; Tsao TS; Farmer SR; Saha AK; Ruderman NB; Tomas E Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E175-81. PubMed ID: 16464908 [TBL] [Abstract][Full Text] [Related]
36. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Merrill GF; Kurth EJ; Hardie DG; Winder WW Am J Physiol; 1997 Dec; 273(6):E1107-12. PubMed ID: 9435525 [TBL] [Abstract][Full Text] [Related]
37. Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise. Klein DK; Pilegaard H; Treebak JT; Jensen TE; Viollet B; Schjerling P; Wojtaszewski JF Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1242-9. PubMed ID: 17711995 [TBL] [Abstract][Full Text] [Related]
38. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Hall JL; Lopaschuk GD; Barr A; Bringas J; Pizzurro RD; Stanley WC Cardiovasc Res; 1996 Nov; 32(5):879-85. PubMed ID: 8944819 [TBL] [Abstract][Full Text] [Related]
39. The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro. Lefort N; St-Amand E; Morasse S; Côté CH; Marette A Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1447-54. PubMed ID: 18812461 [TBL] [Abstract][Full Text] [Related]
40. Isodihydrocapsiate stimulates plasma glucose uptake by activation of AMP-activated protein kinase. Hwang SL; Yang BK; Lee JY; Kim JH; Kim BD; Suh KH; Kim DY; Kim MS; Song H; Park BS; Huh TL Biochem Biophys Res Commun; 2008 Jun; 371(2):289-93. PubMed ID: 18435912 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]