These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17925952)

  • 1. Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules.
    Liu DP; Li GD; Li JX; Li XH; Chen JS
    Chem Commun (Camb); 2007 Oct; (40):4131-3. PubMed ID: 17925952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media.
    Rakshit S; Vasudevan S
    ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supracrystals of inorganic nanocrystals: an open challenge for new physical properties.
    Pileni MP
    Acc Chem Res; 2008 Dec; 41(12):1799-809. PubMed ID: 19007141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super crystal structures of octahedral c-In2O3 nanocrystals.
    Lu W; Liu Q; Sun Z; He J; Ezeolu C; Fang J
    J Am Chem Soc; 2008 Jun; 130(22):6983-91. PubMed ID: 18461942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices.
    Le TH; Noh S; Lee H; Lee J; Kim M; Kim C; Yoon H
    Adv Mater; 2023 Apr; 35(17):e2210749. PubMed ID: 36739656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence of ZnO nanocrystals embedded in BaF2 matrices by magnetron sputtering.
    Zang CH; Liu YC; Mu R; Zhao DX; Zhang JY; Ma JG; Lu YM; Yao B; Shen DZ; Fan XW
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1160-4. PubMed ID: 18468116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface modification on the luminescence of colloidal ZnO nanocrystals.
    Norberg NS; Gamelin DR
    J Phys Chem B; 2005 Nov; 109(44):20810-6. PubMed ID: 16853697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions.
    Sayle DC; Seal S; Wang Z; Mangili BC; Price DW; Karakoti AS; Kuchibhatla SV; Hao Q; Möbus G; Xu X; Sayle TX
    ACS Nano; 2008 Jun; 2(6):1237-51. PubMed ID: 19206342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-controlled aggregation of cube-shaped EuS nanocrystals with magneto-optic properties in solution phase.
    Tanaka A; Kamikubo H; Kataoka M; Hasegawa Y; Kawai T
    Langmuir; 2011 Jan; 27(1):104-8. PubMed ID: 21126046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids.
    Wang L; Chang L; Zhao B; Yuan Z; Shao G; Zheng W
    Inorg Chem; 2008 Mar; 47(5):1443-52. PubMed ID: 18201081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipole-dipole interactions in nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Murray CB; Titov AV; Kral P
    Nano Lett; 2007 May; 7(5):1213-9. PubMed ID: 17397231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction.
    Mukharamova N; Lapkin D; Zaluzhnyy IA; André A; Lazarev S; Kim YY; Sprung M; Kurta RP; Schreiber F; Vartanyants IA; Scheele M
    Small; 2019 Dec; 15(50):e1904954. PubMed ID: 31729151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural control of nanocrystal superlattices using organic guest molecules.
    Nagaoka Y; Chen O; Wang Z; Cao YC
    J Am Chem Soc; 2012 Feb; 134(6):2868-71. PubMed ID: 22283741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices.
    Demortière A; Launois P; Goubet N; Albouy PA; Petit C
    J Phys Chem B; 2008 Nov; 112(46):14583-92. PubMed ID: 18817438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of contact epitaxy in the self-assembly of HgSe nanocrystals formed at a liquid-liquid interface.
    Maiti S; Sanyal MK; Jana MK; Runge B; Murphy BM; Biswas K; Rao CN
    J Phys Condens Matter; 2017 Mar; 29(9):095101. PubMed ID: 27991441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components.
    Liu DP; Li GD; Su Y; Chen JS
    Angew Chem Int Ed Engl; 2006 Nov; 45(44):7370-3. PubMed ID: 17029318
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.