These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 17925972)

  • 1. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lock-exchange experiments with an autocatalytic reaction front.
    Bou Malham I; Jarrige N; Martin J; Rakotomalala N; Talon L; Salin D
    J Chem Phys; 2010 Dec; 133(24):244505. PubMed ID: 21198000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady Marangoni flow traveling with chemical fronts.
    Rongy L; De Wit A
    J Chem Phys; 2006 Apr; 124(16):164705. PubMed ID: 16674155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts.
    D'Hernoncourt J; De Wit A; Merkin JH
    J Chem Phys; 2007 Mar; 126(10):104504. PubMed ID: 17362072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation velocities of chemical reaction fronts advected by Poiseuille flow.
    Edwards BF
    Chaos; 2006 Dec; 16(4):043106. PubMed ID: 17199384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transition from pH waves to iodine waves in the iodate/sulfite/thiosulfate reaction-diffusion system.
    Gao Q; Xie R
    Chemphyschem; 2008 Jun; 9(8):1153-7. PubMed ID: 18433072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of an electric field on the buoyancy-driven instabilities.
    Zadrazil A; Sevcíková H
    J Chem Phys; 2005 Nov; 123(17):174509. PubMed ID: 16375548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers.
    Rongy L; Assemat P; De Wit A
    Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convection in chemical fronts with quadratic and cubic autocatalysis.
    Vasquez DA; Thoreson E
    Chaos; 2002 Mar; 12(1):49-55. PubMed ID: 12779532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport equations of electrodiffusion processes in the laboratory reference frame.
    Garrido J
    J Phys Chem B; 2006 Feb; 110(7):3276-80. PubMed ID: 16494340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of reaction diffusion fronts in laminar flows.
    Leconte M; Martin J; Rakotomalala N; Salin D
    Phys Rev Lett; 2003 Mar; 90(12):128302. PubMed ID: 12688909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.