These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17926026)

  • 1. Vertical (Z-axis) acceleration alters the ocular response to linear acceleration in the rabbit.
    Maruta J; Raphan T; Simpson JI; Cohen B
    Exp Brain Res; 2008 Feb; 185(1):87-99. PubMed ID: 17926026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orienting eye movements and nystagmus produced by translation while rotating (TWR).
    Maruta J; Simpson JI; Raphan T; Cohen B
    Exp Brain Res; 2005 Jun; 163(3):273-83. PubMed ID: 15702320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orienting otolith-ocular reflexes in the rabbit during static and dynamic tilts and off-vertical axis rotation.
    Maruta J; Simpson JI; Raphan T; Cohen B
    Vision Res; 2001; 41(25-26):3255-70. PubMed ID: 11718771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canal-otolith interactions driving vertical and horizontal eye movements in the squirrel monkey.
    Telford L; Seidman SH; Paige GD
    Exp Brain Res; 1996 Jun; 109(3):407-18. PubMed ID: 8817271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-center yaw rotation: effect of naso-occipital linear acceleration on the nystagmus response of normal human subjects and patients after unilateral vestibular loss.
    Curthoys IS; Haslwanter T; Black RA; Burgess AM; Halmagyi GM; Topple AN; Todd MJ
    Exp Brain Res; 1998 Dec; 123(4):425-38. PubMed ID: 9870602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic contributions of the otolith organs to human ocular torsion.
    Merfeld DM; Teiwes W; Clarke AH; Scherer H; Young LR
    Exp Brain Res; 1996 Jul; 110(2):315-21. PubMed ID: 8836695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vergence-mediated changes in the axis of eye rotation during the human vestibulo-ocular reflex can occur independent of eye position.
    Migliaccio AA; Cremer PD; Aw ST; Halmagyi GM; Curthoys IS; Minor LB; Todd MJ
    Exp Brain Res; 2003 Jul; 151(2):238-48. PubMed ID: 12783151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight.
    Moore ST; Cohen B; Raphan T; Berthoz A; Clément G
    Exp Brain Res; 2005 Jan; 160(1):38-59. PubMed ID: 15289967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys.
    Kushiro K; Dai M; Kunin M; Yakushin SB; Cohen B; Raphan T
    J Neurophysiol; 2002 Nov; 88(5):2445-62. PubMed ID: 12424285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse.
    Oommen BS; Stahl JS
    Brain Res; 2008 Feb; 1193():57-66. PubMed ID: 18178173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular adaptation to space in monkeys.
    Dai M; Raphan T; Kozlovskaya I; Cohen B
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):65-77. PubMed ID: 9674517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
    Kaufman GD; Wood SJ; Gianna CC; Black FO; Paloski WH
    Exp Brain Res; 2001 Apr; 137(3-4):397-410. PubMed ID: 11355385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt.
    Merfeld DM; Young LR
    Exp Brain Res; 1995; 106(1):111-22. PubMed ID: 8542967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects.
    Aw ST; Haslwanter T; Halmagyi GM; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4009-20. PubMed ID: 8985896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.
    Telford L; Seidman SH; Paige GD
    J Neurophysiol; 1997 Oct; 78(4):1775-90. PubMed ID: 9325347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance.
    Telford L; Seidman SH; Paige GD
    Exp Brain Res; 1998 Jan; 118(1):115-25. PubMed ID: 9547069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial organization of linear vestibuloocular reflexes of the rat: responses during horizontal and vertical linear acceleration.
    Hess BJ; Dieringer N
    J Neurophysiol; 1991 Dec; 66(6):1805-18. PubMed ID: 1812218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.