These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 17927228)
1. Targeted analysis of protein termini. Dormeyer W; Mohammed S; Breukelen Bv; Krijgsveld J; Heck AJ J Proteome Res; 2007 Dec; 6(12):4634-45. PubMed ID: 17927228 [TBL] [Abstract][Full Text] [Related]
2. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Shen PT; Hsu JL; Chen SH Anal Chem; 2007 Dec; 79(24):9520-30. PubMed ID: 18001127 [TBL] [Abstract][Full Text] [Related]
3. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390 [TBL] [Abstract][Full Text] [Related]
4. Membrane protein identification: N-terminal labeling of nontryptic membrane protein peptides facilitates database searching. Jansson M; Wårell K; Levander F; James P J Proteome Res; 2008 Feb; 7(2):659-65. PubMed ID: 18161939 [TBL] [Abstract][Full Text] [Related]
5. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Li GZ; Vissers JP; Silva JC; Golick D; Gorenstein MV; Geromanos SJ Proteomics; 2009 Mar; 9(6):1696-719. PubMed ID: 19294629 [TBL] [Abstract][Full Text] [Related]
6. Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications. Mohammed S; Heck A Curr Opin Biotechnol; 2011 Feb; 22(1):9-16. PubMed ID: 20926283 [TBL] [Abstract][Full Text] [Related]
7. Functional grouping based on signatures in protein termini. Bahir I; Linial M Proteins; 2006 Jun; 63(4):996-1004. PubMed ID: 16475191 [TBL] [Abstract][Full Text] [Related]
8. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Martinez A; Traverso JA; Valot B; Ferro M; Espagne C; Ephritikhine G; Zivy M; Giglione C; Meinnel T Proteomics; 2008 Jul; 8(14):2809-31. PubMed ID: 18655050 [TBL] [Abstract][Full Text] [Related]
9. Processed N-termini of mature proteins in higher eukaryotes and their major contribution to dynamic proteomics. Meinnel T; Peynot P; Giglione C Biochimie; 2005 Aug; 87(8):701-12. PubMed ID: 16054524 [TBL] [Abstract][Full Text] [Related]
10. Selective isolation of N-terminal peptides from proteins and their de novo sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without regard to unblocking or blocking of N-terminal amino acids. Yamaguchi M; Nakayama D; Shima K; Kuyama H; Ando E; Okamura TA; Ueyama N; Nakazawa T; Norioka S; Nishimura O; Tsunasawa S Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3313-9. PubMed ID: 18821723 [TBL] [Abstract][Full Text] [Related]
11. Targeted mass spectrometric analysis of N-terminally truncated isoforms generated via alternative translation initiation. Kobayashi R; Patenia R; Ashizawa S; Vykoukal J FEBS Lett; 2009 Jul; 583(14):2441-5. PubMed ID: 19481542 [TBL] [Abstract][Full Text] [Related]
12. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry. Shearer D; Ens W; Standing K; Valdimarsson G Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1553-62. PubMed ID: 18385075 [TBL] [Abstract][Full Text] [Related]
13. Predicting N-terminal acetylation based on feature selection method. Cai YD; Lu L Biochem Biophys Res Commun; 2008 Aug; 372(4):862-5. PubMed ID: 18533108 [TBL] [Abstract][Full Text] [Related]
14. Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. Aivaliotis M; Gevaert K; Falb M; Tebbe A; Konstantinidis K; Bisle B; Klein C; Martens L; Staes A; Timmerman E; Van Damme J; Siedler F; Pfeiffer F; Vandekerckhove J; Oesterhelt D J Proteome Res; 2007 Jun; 6(6):2195-204. PubMed ID: 17444671 [TBL] [Abstract][Full Text] [Related]
15. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. McDonald L; Beynon RJ Nat Protoc; 2006; 1(4):1790-8. PubMed ID: 17487161 [TBL] [Abstract][Full Text] [Related]
16. Extending pathways based on gene lists using InterPro domain signatures. Hahne F; Mehrle A; Arlt D; Poustka A; Wiemann S; Beissbarth T BMC Bioinformatics; 2008 Jan; 9():3. PubMed ID: 18177498 [TBL] [Abstract][Full Text] [Related]
17. Statistics of N-terminal alignment as a guide for refining prokaryotic gene annotation. Sato N; Tajima N Genomics; 2012 Mar; 99(3):138-43. PubMed ID: 22244981 [TBL] [Abstract][Full Text] [Related]
18. How well are protein structures annotated in secondary databases? Rother K; Michalsky E; Leser U Proteins; 2005 Sep; 60(4):571-6. PubMed ID: 16021624 [TBL] [Abstract][Full Text] [Related]
20. A proteomics approach to study in vivo protein N(alpha)-modifications. Zhang X; Ye J; Højrup P J Proteomics; 2009 Dec; 73(2):240-51. PubMed ID: 19781671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]