These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 17927398)

  • 1. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.
    Yang X; Cleveland RO
    J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ribs on the nonlinear sound field of therapeutic ultrasound.
    Li JL; Liu XZ; Zhang D; Gong XF
    Ultrasound Med Biol; 2007 Sep; 33(9):1413-20. PubMed ID: 17630093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.
    Demi L; van Dongen KW; Verweij MD
    J Acoust Soc Am; 2011 Mar; 129(3):1221-30. PubMed ID: 21428485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code.
    Qiao S; Jackson E; Coussios CC; Cleveland RO
    J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.
    Yuldashev P; Ollivier S; Averiyanov M; Sapozhnikov O; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2010 Dec; 128(6):3321-33. PubMed ID: 21218866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian representation of high-intensity focused ultrasound beams.
    Soneson JE; Myers MR
    J Acoust Soc Am; 2007 Nov; 122(5):2526-31. PubMed ID: 18189543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model.
    Vanhille C; Campos-Pozuelo C
    Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method.
    Varray F; Ramalli A; Cachard C; Tortoli P; Basset O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1366-76. PubMed ID: 21768021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled hydrodynamic-acoustic modeling of sound generated by impacting cylindrical water jets.
    Chen X; Means SL; Szymczak WG; Rogers JC
    J Acoust Soc Am; 2008 Aug; 124(2):841-50. PubMed ID: 18681576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low sidelobe limited diffraction beams in the nonlinear regime.
    Holm S; Prieur F
    J Acoust Soc Am; 2010 Sep; 128(3):1015-20. PubMed ID: 20815438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-paraxial model for a parametric acoustic array.
    Cervenka M; Bednarik M
    J Acoust Soc Am; 2013 Aug; 134(2):933-8. PubMed ID: 23927092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F; Holm S
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.