These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 17927398)

  • 21. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear absorption in biological tissue for high intensity focused ultrasound.
    Liu X; Li J; Gong X; Zhang D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e27-30. PubMed ID: 16844166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The direct simulation of acoustics on Earth, Mars, and Titan.
    Hanford AD; Long LN
    J Acoust Soc Am; 2009 Feb; 125(2):640-50. PubMed ID: 19206842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature modes for nonlinear Gaussian beams.
    Myers MR; Soneson JE
    J Acoust Soc Am; 2009 Jul; 126(1):425-33. PubMed ID: 19603899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium.
    Biagi E; Breschi L; Vannacci E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):520-35. PubMed ID: 19411211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time near-field acoustic holography for continuously visualizing nonstationary acoustic fields.
    Thomas JH; Grulier V; Paillasseur S; Pascal JC; Le Roux JC
    J Acoust Soc Am; 2010 Dec; 128(6):3554-67. PubMed ID: 21218888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.
    Oba RM
    J Acoust Soc Am; 2010 Jul; 128(1):39-49. PubMed ID: 20649199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The room acoustic rendering equation.
    Siltanen S; Lokki T; Kiminki S; Savioja L
    J Acoust Soc Am; 2007 Sep; 122(3):1624. PubMed ID: 17927422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.
    Rouseff D; Tang D; Williams KL; Wang Z; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-dimensional transport equation models for sound energy propagation in long spaces: theory.
    Jing Y; Larsen EW; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2312-22. PubMed ID: 20370013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear acoustics in cicada mating calls enhance sound propagation.
    Hughes DR; Nuttall AH; Katz RA; Carter GC
    J Acoust Soc Am; 2009 Feb; 125(2):958-67. PubMed ID: 19206872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.
    Hasani MH; Gharibzadeh S; Farjami Y; Tavakkoli J
    J Acoust Soc Am; 2013 Sep; 134(3):1775-90. PubMed ID: 23967912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.