These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17927441)

  • 21. Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples.
    Foiret J; Minonzio JG; Chappard C; Talmant M; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1478-88. PubMed ID: 25167148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical bone quality assessment using quantitative ultrasound on long bones.
    Foiret J; Minonzio JG; Talmant M; Laugier P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1121-4. PubMed ID: 23366093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography.
    Davis KA; Burghardt AJ; Link TM; Majumdar S
    Calcif Tissue Int; 2007 Nov; 81(5):364-71. PubMed ID: 17952361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-D finite element simulation for ultrasonic propagation in tooth.
    Sun X; Witzel EA; Bian H; Kang S
    J Dent; 2008 Jul; 36(7):546-53. PubMed ID: 18514378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of three ultrasonic axial transmission methods for bone assessment.
    Muller M; Moilanen P; Bossy E; Nicholson P; Kilappa V; Timonen J; Talmant M; Cheng S; Laugier P
    Ultrasound Med Biol; 2005 May; 31(5):633-42. PubMed ID: 15866413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Characterization of Cortical Bone Using Guided Waves Measured by Axial Transmission.
    Vallet Q; Bochud N; Chappard C; Laugier P; Minonzio JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1361-1371. PubMed ID: 27392349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation.
    Haïat G; Padilla F; Peyrin F; Laugier P
    J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography.
    Lasaygues P; Ouedraogo E; Lefebvre JP; Gindre M; Talmant M; Laugier P
    Phys Med Biol; 2005 Jun; 50(11):2633-49. PubMed ID: 15901959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Architecture in cortical bone and ultrasound transmission velocity.
    Kann P; Schulz U; Nink M; Pfützner A; Schrezenmeir J; Beyer J
    Clin Rheumatol; 1993 Sep; 12(3):364-7. PubMed ID: 8258238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves.
    Pereira D; Fernandes J; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):910-922. PubMed ID: 31825866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of low-frequency axial transmission acoustics to axially and azimuthally varying cortical thickness: A phantom-based study.
    Vogl F; Patil M; Taylor WR
    PLoS One; 2019; 14(7):e0219360. PubMed ID: 31314773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Inversion of Ultrasonic Dispersion Curves for Cortical Bone Thickness and Elastic Velocities.
    Tran TNHT; Sacchi MD; Ta D; Nguyen VH; Lou E; Le LH
    Ann Biomed Eng; 2019 Nov; 47(11):2178-2187. PubMed ID: 31218488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing heterogeneity of cortical bone with ultrasound axial transmission.
    Foiret J; Grimal Q; Talmant M; Longo R; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):187-93. PubMed ID: 23405434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.
    Cassereau D; Nauleau P; Bendjoudi A; Minonzio JG; Laugier P; Bossy E; Grimal Q
    Ultrasonics; 2014 Jul; 54(5):1197-202. PubMed ID: 23849752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound velocity and cortical bone characteristics in vivo.
    Sievänen H; Cheng S; Ollikainen S; Uusi-Rasi K
    Osteoporos Int; 2001; 12(5):399-405. PubMed ID: 11444089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.