These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Random or rational design? Evaluation of diverse compound subsets from chemical structure databases. Pötter T; Matter H J Med Chem; 1998 Feb; 41(4):478-88. PubMed ID: 9484498 [TBL] [Abstract][Full Text] [Related]
7. Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps. Schneider G; Nettekoven M J Comb Chem; 2003; 5(3):233-7. PubMed ID: 12739938 [TBL] [Abstract][Full Text] [Related]
8. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. Sauer WH; Schwarz MK J Chem Inf Comput Sci; 2003; 43(3):987-1003. PubMed ID: 12767158 [TBL] [Abstract][Full Text] [Related]
9. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. Zauhar RJ; Moyna G; Tian L; Li Z; Welsh WJ J Med Chem; 2003 Dec; 46(26):5674-90. PubMed ID: 14667221 [TBL] [Abstract][Full Text] [Related]
10. A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition. Engels MF; Gibbs AC; Jaeger EP; Verbinnen D; Lobanov VS; Agrafiotis DK J Chem Inf Model; 2006; 46(6):2651-60. PubMed ID: 17125205 [TBL] [Abstract][Full Text] [Related]
11. A screening study of ChirBase molecular database to explore the expanded chiral pool derived from the application of chiral chromatography. Piras P; Roussel C J Pharm Biomed Anal; 2008 Apr; 46(5):839-47. PubMed ID: 17942261 [TBL] [Abstract][Full Text] [Related]
12. Data mining a small molecule drug screening representative subset from NIH PubChem. Xie XQ; Chen JZ J Chem Inf Model; 2008 Mar; 48(3):465-75. PubMed ID: 18302356 [TBL] [Abstract][Full Text] [Related]
13. Efficient exploration of large combinatorial chemistry spaces by monomer-based similarity searching. Yu N; Bakken GA J Chem Inf Model; 2009 Apr; 49(4):745-55. PubMed ID: 19309177 [TBL] [Abstract][Full Text] [Related]
14. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973 [TBL] [Abstract][Full Text] [Related]
15. A kinase-focused compound collection: compilation and screening strategy. Sun D; Chuaqui C; Deng Z; Bowes S; Chin D; Singh J; Cullen P; Hankins G; Lee WC; Donnelly J; Friedman J; Josiah S Chem Biol Drug Des; 2006 Jun; 67(6):385-94. PubMed ID: 16882313 [TBL] [Abstract][Full Text] [Related]
16. Random reduction in fingerprint bit density improves compound recall in search calculations using complex reference molecules. Wang Y; Geppert H; Bajorath J Chem Biol Drug Des; 2008 Jun; 71(6):511-7. PubMed ID: 18466274 [TBL] [Abstract][Full Text] [Related]
17. Critical comparison of virtual screening methods against the MUV data set. Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417 [TBL] [Abstract][Full Text] [Related]
18. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations. Xue L; Godden JW; Stahura FL; Bajorath J J Chem Inf Comput Sci; 2004; 44(4):1275-81. PubMed ID: 15272835 [TBL] [Abstract][Full Text] [Related]
19. Analysis of data fusion methods in virtual screening: similarity and group fusion. Whittle M; Gillet VJ; Willett P; Loesel J J Chem Inf Model; 2006; 46(6):2206-19. PubMed ID: 17125165 [TBL] [Abstract][Full Text] [Related]
20. Scoring ligand similarity in structure-based virtual screening. Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]