These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 17927744)
1. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744 [TBL] [Abstract][Full Text] [Related]
2. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T; Takagi H; Shima J Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409 [TBL] [Abstract][Full Text] [Related]
3. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
5. The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Shi X; Miao Y; Chen JY; Chen J; Li W; He X; Wang J Appl Biochem Biotechnol; 2014 Mar; 172(6):3042-53. PubMed ID: 24482281 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Wei P; Li Z; Lin Y; He P; Jiang N Biotechnol Lett; 2007 Oct; 29(10):1501-8. PubMed ID: 17541503 [TBL] [Abstract][Full Text] [Related]
8. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J; Randez-Gil F; Prieto JA J Agric Food Chem; 2005 Dec; 53(26):9966-70. PubMed ID: 16366681 [TBL] [Abstract][Full Text] [Related]
9. Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. Alves-Araújo C; Almeida MJ; Sousa MJ; Leão C FEMS Microbiol Lett; 2004 Nov; 240(1):7-14. PubMed ID: 15500973 [TBL] [Abstract][Full Text] [Related]
10. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
11. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J; Takagi H Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439 [TBL] [Abstract][Full Text] [Related]
12. [Effect of temperature and the active acidity of the medium on the metabolism of reserve carbohydrates and the survivability of baker's yeast]. Chernysh VG; Bocharova NN Prikl Biokhim Mikrobiol; 1975; 11(5):662-8. PubMed ID: 241991 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
14. Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. Claro FB; Rijsbrack K; Soares EV J Appl Microbiol; 2007 Mar; 102(3):693-700. PubMed ID: 17309618 [TBL] [Abstract][Full Text] [Related]
15. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963 [TBL] [Abstract][Full Text] [Related]
16. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899 [TBL] [Abstract][Full Text] [Related]
17. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass. Zhang Y; Liu W; Xu M; Zheng F; Zhao M J Hazard Mater; 2010 Jun; 178(1-3):1085-93. PubMed ID: 20226588 [TBL] [Abstract][Full Text] [Related]
18. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428 [TBL] [Abstract][Full Text] [Related]
19. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. Bandara A; Fraser S; Chambers PJ; Stanley GA FEMS Yeast Res; 2009 Dec; 9(8):1208-16. PubMed ID: 19799639 [TBL] [Abstract][Full Text] [Related]
20. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]