BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 17927954)

  • 21. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity.
    Satheeshkumar KS; Murali J; Jayakumar R
    J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PrP N-terminal domain triggers PrP(Sc)-like aggregation of Dpl.
    Erlich P; Cesbron JY; Lemaire-Vieille C; Curt A; Andrieu JP; Schoehn G; Jamin M; Gagnon J
    Biochem Biophys Res Commun; 2008 Jan; 365(3):478-83. PubMed ID: 17997980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250).
    Yau J; Sharpe S
    J Struct Biol; 2012 Nov; 180(2):290-302. PubMed ID: 22929126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of amyloid and prion fibril formation in the absence and presence of dense shell sugar-decorated dendrimers.
    Ottaviani MF; Cangiotti M; Fiorani L; Fattori A; Wasiak T; Appelhans D; Klajnert B
    Curr Med Chem; 2012; 19(34):5907-21. PubMed ID: 22834819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of randomizing the Sup35NM prion domain sequence on formation of amyloid fibrils in vitro.
    Liu Y; Wei H; Wang J; Qu J; Zhao W; Tao H
    Biochem Biophys Res Commun; 2007 Feb; 353(1):139-46. PubMed ID: 17166483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features.
    Baskakov IV; Bocharova OV
    Biochemistry; 2005 Feb; 44(7):2339-48. PubMed ID: 15709746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro evaluation of the anti-prionic activity of newly synthesized congo red derivatives.
    Poli G; Ponti W; Carcassola G; Ceciliani F; Colombo L; Dall'Ara P; Gervasoni M; Giannino ML; Martino PA; Pollera C; Villa S; Salmona M
    Arzneimittelforschung; 2003; 53(12):875-88. PubMed ID: 14750496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146).
    Saracino GA; Villa A; Moro G; Cosentino U; Salmona M
    Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunomodulation of the human prion peptide 106-126 aggregation.
    Hanan E; Goren O; Eshkenazy M; Solomon B
    Biochem Biophys Res Commun; 2001 Jan; 280(1):115-20. PubMed ID: 11162487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Native, amyloid fibrils and beta-oligomers of the C-terminal domain of human prion protein display differential activation of complement and bind C1q, factor H and C4b-binding protein directly.
    Sjöberg AP; Nyström S; Hammarström P; Blom AM
    Mol Immunol; 2008 Jun; 45(11):3213-21. PubMed ID: 18406463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments.
    Hamley IW; Krysmann MJ
    Langmuir; 2008 Aug; 24(15):8210-4. PubMed ID: 18598063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids.
    Jones EM; Surewicz WK
    Cell; 2005 Apr; 121(1):63-72. PubMed ID: 15820679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat shock protein 104 inhibited the fibrillization of prion peptide 106-126 and disassembled prion peptide 106-126 fibrils in vitro.
    Liu YH; Han YL; Song J; Wang Y; Jing YY; Shi Q; Tian C; Wang ZY; Li CP; Han J; Dong XP
    Int J Biochem Cell Biol; 2011 May; 43(5):768-74. PubMed ID: 21296677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for conversion of prion protein into amyloid fibrils.
    Breydo L; Makarava N; Baskakov IV
    Methods Mol Biol; 2008; 459():105-15. PubMed ID: 18576151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The organization and assembly of a beta-sheet formed by a prion peptide in solution: an isotope-edited FTIR study.
    Silva RA; Barber-Armstrong W; Decatur SM
    J Am Chem Soc; 2003 Nov; 125(45):13674-5. PubMed ID: 14599201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils.
    Takahashi Y; Ueno A; Mihara H
    Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The toxicity of prion protein fragment PrP(106-126) is not mediated by membrane permeabilization as shown by a M112W substitution.
    Henriques ST; Pattenden LK; Aguilar MI; Castanho MA
    Biochemistry; 2009 May; 48(19):4198-208. PubMed ID: 19301918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.