BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17928028)

  • 21. AQUATOX coupled foodweb model for ecosystem risk assessment of Polybrominated diphenyl ethers (PBDEs) in lake ecosystems.
    Zhang L; Liu J
    Environ Pollut; 2014 Aug; 191():80-92. PubMed ID: 24816200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network.
    Park YS; Verdonschot PF; Chon TS; Lek S
    Water Res; 2003 Apr; 37(8):1749-58. PubMed ID: 12697219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration and validation of a dynamic water model in agricultural scenarios.
    Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A
    Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A delay differential equation model on harmful algal blooms in the presence of toxic substances.
    Chattopadhyay J; Sarkar RR; El Abdllaoui A
    IMA J Math Appl Med Biol; 2002 Jun; 19(2):137-61. PubMed ID: 12630776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models.
    De Laender F; De Schamphelaere KA; Vanrolleghem PA; Janssen CR
    Environ Int; 2008 Apr; 34(3):390-6. PubMed ID: 17977598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum.
    Beketov MA; Liess M
    Environ Pollut; 2008 Dec; 156(3):980-7. PubMed ID: 18547697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers.
    Müller-Navarra DC; Brett MT; Liston AM; Goldman CR
    Nature; 2000 Jan; 403(6765):74-7. PubMed ID: 10638754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the potential effects of atrazine on aquatic communities in midwestern streams.
    Bartell SM; Brain RA; Hendley P; Nair SK
    Environ Toxicol Chem; 2013 Oct; 32(10):2402-11. PubMed ID: 24006334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of macroinvertebrate assemblages in a long-term watershed-scale study to address the effects of pulp and paper mill discharges in four US receiving streams.
    Flinders CA; Minshall GW; Ragsdale RL; Hall TJ
    Integr Environ Assess Manag; 2009 Apr; 5(2):248-58. PubMed ID: 19127981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks.
    Park YS; Chon TS; Kwak IS; Lek S
    Sci Total Environ; 2004 Jul; 327(1-3):105-22. PubMed ID: 15172575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of fish community structure in a long-term watershed-scale study to address the aquatic ecosystem effects of pulp and paper mill discharges in four US receiving streams.
    Flinders CA; Ragsdale RL; Hall TJ
    Integr Environ Assess Manag; 2009 Apr; 5(2):219-33. PubMed ID: 19115783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of microbial biofilms to ecosystem processes in stream mesocosms.
    Battin TJ; Kaplan LA; Denis Newbold J; Hansen CM
    Nature; 2003 Nov; 426(6965):439-42. PubMed ID: 14647381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utility of stable isotopes ((13)C and (15)N) to demonstrate comparability between natural and experimental streams for environmental risk assessment.
    Morrall DD; Christman SC; Peterson BJ; Wolheim WM; Belanger SE
    Ecotoxicol Environ Saf; 2006 Sep; 65(1):22-35. PubMed ID: 16139363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dynamic model for assessing radiological consequences of tritium routinely released in rivers. Application to the Loire River.
    Ciffroy P; Siclet F; Damois C; Luck M
    J Environ Radioact; 2006; 90(2):110-39. PubMed ID: 16939696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of biocomplexity in an aquatic ecosystem through ascendency.
    Mandal S; Ray S; Roy SK
    Biosystems; 2009 Jan; 95(1):30-4. PubMed ID: 18639609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and temporal variability in the structure of invertebrate assemblages in control stream mesocosms.
    Wong DC; Maltby L; Whittle D; Warren P; Dorn PB
    Water Res; 2004 Jan; 38(1):128-38. PubMed ID: 14630110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system--a mathematical study supported by experimental findings.
    Sarkar RR; Pal S; Chattopadhyay J
    Biosystems; 2005 Apr; 80(1):11-23. PubMed ID: 15740831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental toxicology: population modeling of cod larvae shows high sensitivity to loss of zooplankton prey.
    Stige LC; Ottersen G; Hjermann DØ; Dalpadado P; Jensen LK; Stenseth NC
    Mar Pollut Bull; 2011 Feb; 62(2):395-8. PubMed ID: 21194716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of fate and ecological effects of the herbicide linuron in freshwater model ecosystems between tropical and temperate regions.
    Daam MA; Van den Brink PJ; Nogueira AJ
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):424-33. PubMed ID: 18722013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.
    Kumblad L; Kautsky U; Naeslund B
    J Environ Radioact; 2006; 87(1):107-29. PubMed ID: 16406229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.