BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17928036)

  • 21. Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques.
    Duarte S; Pascoal C; Alves A; Correia A; Cássio F
    Microbiol Res; 2010 Jul; 165(5):351-62. PubMed ID: 19720514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India.
    Agoramoorthy G; Chen FA; Hsu MJ
    Environ Pollut; 2008 Sep; 155(2):320-6. PubMed ID: 18086510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species.
    Bleuel C; Wesenberg D; Sutter K; Miersch J; Braha B; Bärlocher F; Krauss GJ
    Sci Total Environ; 2005 Jun; 345(1-3):13-21. PubMed ID: 15919523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy metal contamination from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia.
    Edinger EN; Azmy K; Diegor W; Siregar PR
    Mar Pollut Bull; 2008 Sep; 56(9):1553-69. PubMed ID: 18639304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition.
    Moreirinha C; Duarte S; Pascoal C; Cássio F
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):211-9. PubMed ID: 20957352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.
    Coynel A; Blanc G; Marache A; Schäfer J; Dabrin A; Maneux E; Bossy C; Masson M; Lavaux G
    J Environ Monit; 2009 May; 11(5):962-76. PubMed ID: 19436854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of airborne heavy metal pollution by aboveground plant parts.
    Rossini Oliva S; Mingorance MD
    Chemosphere; 2006 Oct; 65(2):177-82. PubMed ID: 16624374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.
    Ferreira V; Gonçalves AL; Canhoto C
    Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia.
    Williamson BJ; Mikhailova I; Purvis OW; Udachin V
    Sci Total Environ; 2004 Apr; 322(1-3):139-54. PubMed ID: 15081744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation approach using charophytes-preliminary laboratory and field studies of mine drainage water from the Mansfeld Region, Germany.
    Herbst A; Patzelt L; Schoebe S; Schubert H; von Tümpling W
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34983-34992. PubMed ID: 31664669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A bioassay for metals utilizing a human cell line.
    Shea J; Moran T; Dehn PF
    Toxicol In Vitro; 2008 Jun; 22(4):1025-31. PubMed ID: 18400465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of heavy metal mine drainage on population size structure, reproduction, and condition of western mosquitofish, Gambusia affinis.
    Franssen CM
    Arch Environ Contam Toxicol; 2009 Jul; 57(1):145-56. PubMed ID: 18846312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the disturbance caused by an industrial discharge using field transfer of epipelic biofilm.
    Victoria SM; Gómez N
    Sci Total Environ; 2010 Jun; 408(13):2696-705. PubMed ID: 20385404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: bioindicative aspects.
    Jirsa F; Leodolter-Dvorak M; Krachler R; Frank C
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):619-26. PubMed ID: 18347839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Sci Total Environ; 2009 Jul; 407(14):4283-8. PubMed ID: 19411090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death.
    Mille-Lindblom C; von Wachenfeldt E; Tranvik LJ
    J Microbiol Methods; 2004 Nov; 59(2):253-62. PubMed ID: 15369861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of heavy metal pollutants accumulation in the Tisza river sediments.
    Sakan SM; Dordević DS; Manojlović DD; Predrag PS
    J Environ Manage; 2009 Aug; 90(11):3382-90. PubMed ID: 19515481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics and accumulation of heavy metals in sediments originated from an electroplating plant.
    Hang X; Wang H; Zhou J; Du C; Chen X
    J Hazard Mater; 2009 Apr; 163(2-3):922-30. PubMed ID: 18799260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.