These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17928097)
1. Protein oxidation in the leaves and roots of cucumber plants (Cucumis sativus L.), mutant MSC16 and wild type. Juszczuk IM; Tybura A; Rychter AM J Plant Physiol; 2008 Mar; 165(4):355-65. PubMed ID: 17928097 [TBL] [Abstract][Full Text] [Related]
2. BN-PAGE analysis of the respiratory chain complexes in mitochondria of cucumber MSC16 mutant. Juszczuk IM; Rychter AM Plant Physiol Biochem; 2009 May; 47(5):397-406. PubMed ID: 19181534 [TBL] [Abstract][Full Text] [Related]
3. Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Juszczuk IM; Flexas J; Szal B; Dabrowska Z; Ribas-Carbo M; Rychter AM Physiol Plant; 2007 Dec; 131(4):527-41. PubMed ID: 18251845 [TBL] [Abstract][Full Text] [Related]
4. Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent. Szal B; Lukawska K; Zdolińska I; Rychter AM Physiol Plant; 2009 Dec; 137(4):435-45. PubMed ID: 19549067 [TBL] [Abstract][Full Text] [Related]
5. Changes in energy status of leaf cells as a consequence of mitochondrial genome rearrangement. Szal B; Dabrowska Z; Malmberg G; Gardeström P; Rychter AM Planta; 2008 Feb; 227(3):697-706. PubMed ID: 17968586 [TBL] [Abstract][Full Text] [Related]
6. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities. Florez-Sarasa I; Ostaszewska M; Galle A; Flexas J; Rychter AM; Ribas-Carbo M Physiol Plant; 2009 Dec; 137(4):419-26. PubMed ID: 19493308 [TBL] [Abstract][Full Text] [Related]
7. Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism. Szal B; Jastrzębska A; Kulka M; Leśniak K; Podgórska A; Pärnik T; Ivanova H; Keerberg O; Gardeström P; Rychter AM Planta; 2010 Nov; 232(6):1371-82. PubMed ID: 20830597 [TBL] [Abstract][Full Text] [Related]
8. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H⁺-ATPase activity and abundance. Nikolic M; Cesco S; Monte R; Tomasi N; Gottardi S; Zamboni A; Pinton R; Varanini Z BMC Plant Biol; 2012 May; 12():66. PubMed ID: 22571503 [TBL] [Abstract][Full Text] [Related]
9. Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. Ostaszewska-Bugajska M; Rychter AM; Juszczuk IM J Plant Physiol; 2015 Aug; 186-187():25-38. PubMed ID: 26339750 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background. Mróz TL; Eves-van den Akker S; Bernat A; Skarzyńska A; Pryszcz L; Olberg M; Havey MJ; Bartoszewski G G3 (Bethesda); 2018 Mar; 8(3):953-965. PubMed ID: 29330162 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression analysis of transketolase gene in Cucumis sativus L. Bi H; Wang M; Dong X; Ai X Plant Physiol Biochem; 2013 Sep; 70():512-21. PubMed ID: 23860231 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Smakowska E; Czarna M; Janska H Mitochondrion; 2014 Nov; 19 Pt B():245-51. PubMed ID: 24662487 [TBL] [Abstract][Full Text] [Related]
13. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. Li J; Sun J; Yang Y; Guo S; Glick BR Plant Physiol Biochem; 2012 Feb; 51():74-80. PubMed ID: 22153242 [TBL] [Abstract][Full Text] [Related]
14. Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber. Del Valle-Echevarria AR; Sanseverino W; Garcia-Mas J; Havey MJ Theor Appl Genet; 2016 Oct; 129(10):1951-9. PubMed ID: 27423873 [TBL] [Abstract][Full Text] [Related]
15. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. Juszczuk IM; Szal B; Rychter AM Plant Cell Environ; 2012 Feb; 35(2):296-307. PubMed ID: 21414015 [TBL] [Abstract][Full Text] [Related]
16. [Effects of soil compactness stress on root activity and leaf photosynthesis of cucumber]. Sun Y; Wang YQ; Yang M; Xu L Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Oct; 31(5):545-50. PubMed ID: 16222099 [TBL] [Abstract][Full Text] [Related]
17. Allelochemical L-DOPA induces quinoprotein adducts and inhibits NADH dehydrogenase activity and root growth of cucumber. Mushtaq MN; Sunohara Y; Matsumoto H Plant Physiol Biochem; 2013 Sep; 70():374-8. PubMed ID: 23831820 [TBL] [Abstract][Full Text] [Related]
18. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Zhu YX; Xu XB; Hu YH; Han WH; Yin JL; Li HL; Gong HJ Plant Cell Rep; 2015 Sep; 34(9):1629-46. PubMed ID: 26021845 [TBL] [Abstract][Full Text] [Related]
19. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Sang MK; Kim KD Phytopathology; 2011 Jun; 101(6):732-40. PubMed ID: 21281115 [TBL] [Abstract][Full Text] [Related]
20. Iron availability affects the function of mitochondria in cucumber roots. Vigani G; Maffi D; Zocchi G New Phytol; 2009; 182(1):127-136. PubMed ID: 19192186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]