These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17928131)

  • 1. Three mechanisms and rapid-equilibrium rate equations for a type of reductase reaction.
    Alberty RA
    Biophys Chem; 2007 Dec; 131(1-3):71-9. PubMed ID: 17928131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumption of hydrogen ions in rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(49):16083-6. PubMed ID: 20550143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different ways that hydrogen ions are involved in the thermodynamics and rapid-equilibrium kinetics of the enzymatic catalysis of S=P and S+H2O=P.
    Alberty RA
    Biophys Chem; 2007 Jul; 128(2-3):204-9. PubMed ID: 17490804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH in rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2007 Dec; 111(50):14064-8. PubMed ID: 18027926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of the reactions of carbamoyl phosphate.
    Alberty RA
    Arch Biochem Biophys; 2006 Jul; 451(1):17-22. PubMed ID: 16684500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relations between biochemical thermodynamics and biochemical kinetics.
    Alberty RA
    Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid-equilibrium rate equations for the enzymatic catalysis of A+B=P+Q over a range of pH.
    Alberty RA
    Biophys Chem; 2008 Feb; 132(2-3):114-26. PubMed ID: 18061334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of kinetic parameters when modifiers are bound in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2010 Feb; 114(4):1684-9. PubMed ID: 20055362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple rate-determining steps for nonideal and fractal kinetics.
    Vlad MO; Popa VT; Segal E; Ross J
    J Phys Chem B; 2005 Feb; 109(6):2455-60. PubMed ID: 16851241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Components and coupling in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2005 Feb; 109(5):2021-6. PubMed ID: 16851187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stationary kinetics of catalysis by the hydrogenase of Thiocapsa roseopersicina].
    Varfolomeev SD; Gogotov IN; Toaĭ ChD; Bachurin SO
    Mol Biol (Mosk); 1978; 12(1):63-82. PubMed ID: 24804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dinuclear Zn(II) complex catalyzed cyclization of a series of 2-hydroxypropyl aryl phosphate RNA models: progressive change in mechanism from rate-limiting P-O bond cleavage to substrate binding.
    Bunn SE; Liu CT; Lu ZL; Neverov AA; Brown RS
    J Am Chem Soc; 2007 Dec; 129(51):16238-48. PubMed ID: 18047345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity of thiolate ligand and preference of substrate in model reactions of dissimilatory nitrate reductase.
    Majumdar A; Pal K; Sarkar S
    Inorg Chem; 2008 Apr; 47(8):3393-401. PubMed ID: 18335980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential.
    Gates AJ; Richardson DJ; Butt JN
    Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical thermodynamics: applications of Mathematica.
    Alberty RA
    Methods Biochem Anal; 2006; 48():1-458. PubMed ID: 16878778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
    Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ
    J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase.
    Gladwin MT; Grubina R; Doyle MP
    Acc Chem Res; 2009 Jan; 42(1):157-67. PubMed ID: 18783254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.