BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 1792816)

  • 1. Effects of hypoxia on a potassium channel in cat cerebral arterial muscle cells.
    Bonnet P; Gebremedhin D; Rush NJ; Harder DR
    Z Kardiol; 1991; 80 Suppl 7():25-7. PubMed ID: 1792816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mitochondrial KATP channel on voltage-gated K+ channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells.
    Wang T; Zhang ZX; Xu YJ
    Chin Med J (Engl); 2005 Jan; 118(1):12-9. PubMed ID: 15642220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channel diversity in vascular smooth muscle cells.
    Michelakis ED; Reeve HL; Huang JM; Tolarova S; Nelson DP; Weir EK; Archer SL
    Can J Physiol Pharmacol; 1997 Jul; 75(7):889-97. PubMed ID: 9315358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of adenosine triphosphate-sensitive potassium channel inhibitors on coronary metabolic vasodilation.
    Farouque HM; Meredith IT
    Trends Cardiovasc Med; 2007 Feb; 17(2):63-8. PubMed ID: 17292049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin activates ATP-sensitive potassium channels via phosphatidylinositol 3-kinase in cultured vascular smooth muscle cells.
    Yasui S; Mawatari K; Kawano T; Morizumi R; Hamamoto A; Furukawa H; Koyama K; Nakamura A; Hattori A; Nakano M; Harada N; Hosaka T; Takahashi A; Oshita S; Nakaya Y
    J Vasc Res; 2008; 45(3):233-43. PubMed ID: 18097147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP sensitive K+ channel may be involved in the protective effects of preconditioning in isolated guinea pig cardiomyocytes.
    Liu H; Chen H; Yang X; Cheng J
    Chin Med J (Engl); 2001 Feb; 114(2):178-82. PubMed ID: 11780202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of extracellular pH on vasopressin inhibition of ATP-sensitive K+ channels in vascular smooth muscle cells.
    Kawano T; Tanaka K; Nazari H; Oshita S; Takahashi A; Nakaya Y
    Anesth Analg; 2007 Dec; 105(6):1714-9, table of contents. PubMed ID: 18042872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The inhibition effect of acute hypoxia on K+Ca-ATP channels of pulmonary artery smooth muscle cells of rats].
    Xiao X; Chen W; Cheng D
    Zhonghua Jie He He Hu Xi Za Zhi; 1998 Jul; 21(7):415-9. PubMed ID: 11326881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.
    Valenzuela F; García-Saisó S; Lemini C; Ramírez-Solares R; Vidrio H; Mendoza-Fernández V
    Vascul Pharmacol; 2005 Aug; 43(2):120-7. PubMed ID: 15958287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasodilatation evoked by K+ channel opening.
    Siegel G; Mironneau J; Schnalke F; Schröder G; Schulz BG; Grote J
    Prog Clin Biol Res; 1990; 327():299-306. PubMed ID: 1690896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current.
    Osipenko ON; Evans AM; Gurney AM
    Br J Pharmacol; 1997 Apr; 120(8):1461-70. PubMed ID: 9113366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels.
    Nelson MT; Huang Y; Brayden JE; Hescheler J; Standen NB
    Nature; 1990 Apr; 344(6268):770-3. PubMed ID: 2109832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia increases the activity of Ca(2+)-sensitive K+ channels in cat cerebral arterial muscle cell membranes.
    Gebremedhin D; Bonnet P; Greene AS; England SK; Rusch NJ; Lombard JH; Harder DR
    Pflugers Arch; 1994 Oct; 428(5-6):621-30. PubMed ID: 7838685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes.
    Quayle JM; Turner MR; Burrell HE; Kamishima T
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H71-80. PubMed ID: 16489108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle.
    Olschewski A; Hong Z; Nelson DP; Weir EK
    Am J Physiol Lung Cell Mol Physiol; 2002 Nov; 283(5):L1143-50. PubMed ID: 12376369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-induced vascular smooth muscle relaxation: increased ATP-sensitive K+ efflux or decreased voltage-sensitive Ca2+ influx?
    Gauthier KM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H24-5. PubMed ID: 16565315
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation.
    Zaritsky JJ; Eckman DM; Wellman GC; Nelson MT; Schwarz TL
    Circ Res; 2000 Jul; 87(2):160-6. PubMed ID: 10904001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.