BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 17928224)

  • 1. SSF production of lactic acid from cellulosic biosludges.
    Romaní A; Yáñez R; Garrote G; Alonso JL
    Bioresour Technol; 2008 Jul; 99(10):4247-54. PubMed ID: 17928224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.
    Budhavaram NK; Fan Z
    Bioresour Technol; 2009 Dec; 100(23):5966-72. PubMed ID: 19577925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus.
    Yen HW; Kang JL
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1017-23. PubMed ID: 20373112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation.
    Nakasaki K; Adachi T
    Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.
    Gullón B; Yáñez R; Alonso JL; Parajó JC
    Bioresour Technol; 2008 Jan; 99(2):308-19. PubMed ID: 17321133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation.
    Zhu Y; Lee YY; Elander RT
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae.
    Wang Z; Wang Y; Yang ST; Wang R; Ren H
    Bioresour Technol; 2010 Jul; 101(14):5557-64. PubMed ID: 20219359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF.
    Kang L; Wang W; Lee YY
    Appl Biochem Biotechnol; 2010 May; 161(1-8):53-66. PubMed ID: 20099047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment.
    Gullón B; Garrote G; Alonso JL; Parajó JC
    J Agric Food Chem; 2007 Jul; 55(14):5580-7. PubMed ID: 17567032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis.
    Thongchul N; Navankasattusas S; Yang ST
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):407-16. PubMed ID: 19533174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-stage high cell continuous fermentation for high productivity and titer.
    Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J
    Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693.
    Saha BC; Nakamura LK
    Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process.
    dos Santos Dda S; Camelo AC; Rodrigues KC; Carlos LC; Pereira N
    Appl Biochem Biotechnol; 2010 May; 161(1-8):93-105. PubMed ID: 19876607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials.
    Wee YJ; Ryu HW
    Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.