BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17928231)

  • 1. Radionuclide sorption-desorption pattern in soils from Spain.
    Gil-García CJ; Rigol A; Rauret G; Vidal M
    Appl Radiat Isot; 2008 Feb; 66(2):126-38. PubMed ID: 17928231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion experiments for estimating radiocesium and radiostrontium sorption in unsaturated soils from Spain: comparison with batch sorption data.
    Aldaba D; Rigol A; Vidal M
    J Hazard Mater; 2010 Sep; 181(1-3):1072-9. PubMed ID: 20591561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of radionuclide aging in soils from the Chernobyl and Mediterranean areas.
    Roig M; Vidal M; Rauret G; Rigol A
    J Environ Qual; 2007; 36(4):943-52. PubMed ID: 17526873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption-desorption characteristics of uranium, cesium and strontium in typical podzol soils from Ukraine.
    Mishra S; Arae H; Zamostyan PV; Ishikawa T; Yonehara H; Sahoo SK
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):238-42. PubMed ID: 22929558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of hard- and soft-modelling to predict radiostrontium solid-liquid distribution coefficients in soils.
    Gil-García CJ; Rigol A; Vidal M
    Chemosphere; 2011 Nov; 85(8):1400-5. PubMed ID: 21890173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities.
    Chiang PN; Wang MK; Huang PM; Wang JJ; Chiu CY
    J Environ Radioact; 2010 Jun; 101(6):472-81. PubMed ID: 19038481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption models of 137Cs radionuclide and Sr (II) on some Egyptian soils.
    Kamel NH
    J Environ Radioact; 2010 Apr; 101(4):297-303. PubMed ID: 20167404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption-desorption tests to assess the risk derived from metal contamination in mineral and organic soils.
    Sastre J; Rauret G; Vidal M
    Environ Int; 2007 Feb; 33(2):246-56. PubMed ID: 17140662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium.
    Gil-García C; Rigol A; Vidal M
    J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erosion of atmospherically deposited radionuclides as affected by soil disaggregation mechanisms.
    Claval D; Garcia-Sanchez L; Réal J; Rouxel R; Mauger S; Sellier L
    J Environ Radioact; 2004; 77(1):47-61. PubMed ID: 15297040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radionuclide monitoring strategy for food-chain in Hungary.
    Varga B; Tarján S; Süth M; Sas B
    J Environ Radioact; 2006; 86(1):1-11. PubMed ID: 16122856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of mechanistic and PLS-based regression models to predict radiocaesium distribution coefficients in soils.
    Gil-García CJ; Rigol A; Vidal M
    J Hazard Mater; 2011 Dec; 197():11-8. PubMed ID: 21993147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sensitivity of different environments to radioactive contamination.
    Tracy BL; Carini F; Barabash S; Berkovskyy V; Brittain JE; Chouhan S; Eleftheriou G; Iosjpe M; Monte L; Psaltaki M; Shen J; Tschiersch J; Turcanu C
    J Environ Radioact; 2013 Aug; 122():1-8. PubMed ID: 23517769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption and desorption of radioselenium on calcareous soil and its solid components studied by batch and column experiments.
    Wang X; Liu X
    Appl Radiat Isot; 2005 Jan; 62(1):1-9. PubMed ID: 15498678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption and desorption of radiocesium on red earth and its solid components: relative contribution and hysteresis.
    Xiangke W; Wenming D; Zhi L; Du Jinzhou ; Zuyi T
    Appl Radiat Isot; 2000 Apr; 52(4):813-9. PubMed ID: 10800717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil?
    Niedrée B; Berns AE; Vereecken H; Burauel P
    J Environ Radioact; 2013 Apr; 118():21-9. PubMed ID: 23231995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of BORIS: Bioavailability of Radionuclides in Soils.
    Tamponnet C; Martin-Garin A; Gonze MA; Parekh N; Vallejo R; Sauras-Yera T; Casadesus J; Plassard C; Staunton S; Norden M; Avila R; Shaw G
    J Environ Radioact; 2008 May; 99(5):820-30. PubMed ID: 18061320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling.
    Szenknect S; Ardois C; Gaudet JP; Barthès V
    J Contam Hydrol; 2005 Jan; 76(1-2):139-65. PubMed ID: 15588576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term consequences for Northern Norway of a hypothetical release from the Kola nuclear power plant.
    Howard BJ; Wright SM; Salbu B; Skuterud KL; Hove K; Loe R
    Sci Total Environ; 2004 Jul; 327(1-3):53-68. PubMed ID: 15172571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiostrontium hot spot in the Russian Arctic: ground surface contamination by (90)Sr at the "Kraton-3" underground nuclear explosion site.
    Ramzaev V; Mishine A; Basalaeva L; Brown J
    J Environ Radioact; 2007; 95(2-3):107-25. PubMed ID: 17400344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.