BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 17928317)

  • 1. Structural and functional abnormalities of the motor system in developmental stuttering.
    Watkins KE; Smith SM; Davis S; Howell P
    Brain; 2008 Jan; 131(Pt 1):50-9. PubMed ID: 17928317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disrupted white matter in language and motor tracts in developmental stuttering.
    Connally EL; Ward D; Howell P; Watkins KE
    Brain Lang; 2014 Apr; 131():25-35. PubMed ID: 23819900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of trait and state in stuttering.
    Connally EL; Ward D; Pliatsikas C; Finnegan S; Jenkinson M; Boyles R; Watkins KE
    Hum Brain Mapp; 2018 Aug; 39(8):3109-3126. PubMed ID: 29624772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neurological underpinnings of cluttering: Some initial findings.
    Ward D; Connally EL; Pliatsikas C; Bretherton-Furness J; Watkins KE
    J Fluency Disord; 2015 Mar; 43():1-16. PubMed ID: 25662409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.
    Kell CA; Neumann K; Behrens M; von Gudenberg AW; Giraud AL
    J Fluency Disord; 2018 Mar; 55():135-144. PubMed ID: 28216127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Basal Ganglia and Its Neuronal Connections in the Development of Stuttering: A Review Article.
    G D; B H S; Gajbe U; Singh BR; Sawal A; Balwir T
    Cureus; 2022 Aug; 14(8):e28653. PubMed ID: 36196326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White matter neuroanatomical differences in young children who stutter.
    Chang SE; Zhu DC; Choo AL; Angstadt M
    Brain; 2015 Mar; 138(Pt 3):694-711. PubMed ID: 25619509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PET study of the neural systems of stuttering.
    Fox PT; Ingham RJ; Ingham JC; Hirsch TB; Downs JH; Martin C; Jerabek P; Glass T; Lancaster JL
    Nature; 1996 Jul; 382(6587):158-61. PubMed ID: 8700204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting-state brain activity in adult males who stutter.
    Xuan Y; Meng C; Yang Y; Zhu C; Wang L; Yan Q; Lin C; Yu C
    PLoS One; 2012; 7(1):e30570. PubMed ID: 22276215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The frontal aslant tract underlies speech fluency in persistent developmental stuttering.
    Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Civier O; Ben-Shachar M
    Brain Struct Funct; 2016 Jan; 221(1):365-81. PubMed ID: 25344925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.
    Neef NE; Hoang TN; Neef A; Paulus W; Sommer M
    Brain; 2015 Mar; 138(Pt 3):712-25. PubMed ID: 25595146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluency shaping increases integration of the command-to-execution and the auditory-to-motor pathways in persistent developmental stuttering.
    Korzeczek A; Primaßin A; Wolff von Gudenberg A; Dechent P; Paulus W; Sommer M; Neef NE
    Neuroimage; 2021 Dec; 245():118736. PubMed ID: 34798230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered functional connectivity in persistent developmental stuttering.
    Yang Y; Jia F; Siok WT; Tan LH
    Sci Rep; 2016 Jan; 6():19128. PubMed ID: 26743821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activation abnormalities during speech and non-speech in stuttering speakers.
    Chang SE; Kenney MK; Loucks TM; Ludlow CL
    Neuroimage; 2009 May; 46(1):201-12. PubMed ID: 19401143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single word reading in developmental stutterers and fluent speakers.
    Salmelin R; Schnitzler A; Schmitz F; Freund HJ
    Brain; 2000 Jun; 123 ( Pt 6)():1184-202. PubMed ID: 10825357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation.
    Civier O; Bullock D; Max L; Guenther FH
    Brain Lang; 2013 Sep; 126(3):263-78. PubMed ID: 23872286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.