BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17928357)

  • 1. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti.
    Kent LB; Walden KK; Robertson HM
    Chem Senses; 2008 Jan; 33(1):79-93. PubMed ID: 17928357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses.
    Zhou JJ; He XL; Pickett JA; Field LM
    Insect Mol Biol; 2008 Apr; 17(2):147-63. PubMed ID: 18353104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila gustatory receptors: from gene identification to functional expression.
    Chyb S
    J Insect Physiol; 2004 Jun; 50(6):469-77. PubMed ID: 15183276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Plus-C" odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae.
    Zhou JJ; Huang W; Zhang GA; Pickett JA; Field LM
    Gene; 2004 Feb; 327(1):117-29. PubMed ID: 14960367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs.
    Melo AC; Rützler M; Pitts RJ; Zwiebel LJ
    Chem Senses; 2004 Jun; 29(5):403-10. PubMed ID: 15201207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis.
    Robertson HM; Gadau J; Wanner KW
    Insect Mol Biol; 2010 Feb; 19 Suppl 1():121-36. PubMed ID: 20167023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Characterisation of the
    Bibi M; Hussain A; Ali F; Ali A; Said F; Tariq K; Yun BW
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569638
    [No Abstract]   [Full Text] [Related]  

  • 8. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of the Aedes aegypti odorant receptor gene family.
    Bohbot J; Pitts RJ; Kwon HW; Rützler M; Robertson HM; Zwiebel LJ
    Insect Mol Biol; 2007 Oct; 16(5):525-37. PubMed ID: 17635615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two globin genes from the malaria mosquito Anopheles gambiae: divergent origin of nematoceran haemoglobins.
    Burmester T; Klawitter S; Hankeln T
    Insect Mol Biol; 2007 Apr; 16(2):133-42. PubMed ID: 17298561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gustatory receptor expression in the labella and tarsi of Aedes aegypti.
    Sparks JT; Vinyard BT; Dickens JC
    Insect Biochem Mol Biol; 2013 Dec; 43(12):1161-71. PubMed ID: 24157615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands.
    Korochkina S; Barreau C; Pradel G; Jeffery E; Li J; Natarajan R; Shabanowitz J; Hunt D; Frevert U; Vernick KD
    Cell Microbiol; 2006 Jan; 8(1):163-75. PubMed ID: 16367875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Aedes aegypti genome: a comparative perspective.
    Waterhouse RM; Wyder S; Zdobnov EM
    Insect Mol Biol; 2008 Feb; 17(1):1-8. PubMed ID: 18237279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout.
    Bohbot J; Vogt RG
    Insect Biochem Mol Biol; 2005 Sep; 35(9):961-79. PubMed ID: 15978998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis.
    Li ZX; Pickett JA; Field LM; Zhou JJ
    Arch Insect Biochem Physiol; 2005 Mar; 58(3):175-89. PubMed ID: 15717318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and expression of the odorant-binding protein 7 gene in Anopheles stephensi and comparative analysis among five mosquito species.
    Sengul MS; Tu Z
    Insect Mol Biol; 2008 Dec; 17(6):631-45. PubMed ID: 18811600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti.
    Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G
    BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection patterns of gustatory neurons in the suboesophageal ganglion and tritocerebrum of mosquitoes.
    Ignell R; Hansson BS
    J Comp Neurol; 2005 Nov; 492(2):214-33. PubMed ID: 16196031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of detoxification genes in the mosquito Aedes aegypti.
    Strode C; Wondji CS; David JP; Hawkes NJ; Lumjuan N; Nelson DR; Drane DR; Karunaratne SH; Hemingway J; Black WC; Ranson H
    Insect Biochem Mol Biol; 2008 Jan; 38(1):113-23. PubMed ID: 18070670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum.
    Hauser F; Cazzamali G; Williamson M; Park Y; Li B; Tanaka Y; Predel R; Neupert S; Schachtner J; Verleyen P; Grimmelikhuijzen CJ
    Front Neuroendocrinol; 2008 Jan; 29(1):142-65. PubMed ID: 18054377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.