BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17928405)

  • 1. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.
    Tai SL; Daran-Lapujade P; Walsh MC; Pronk JT; Daran JM
    Mol Biol Cell; 2007 Dec; 18(12):5100-12. PubMed ID: 17928405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Hazelwood LA; Walsh MC; Luttik MA; Daran-Lapujade P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2009 Nov; 75(21):6876-85. PubMed ID: 19734328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.
    Hebly M; de Ridder D; de Hulster EA; de la Torre Cortes P; Pronk JT; Daran-Lapujade P
    Appl Environ Microbiol; 2014 Jul; 80(14):4433-49. PubMed ID: 24814792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.
    Pizarro FJ; Jewett MC; Nielsen J; Agosin E
    Appl Environ Microbiol; 2008 Oct; 74(20):6358-68. PubMed ID: 18723660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold adaptation in budding yeast.
    Schade B; Jansen G; Whiteway M; Entian KD; Thomas DY
    Mol Biol Cell; 2004 Dec; 15(12):5492-502. PubMed ID: 15483057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.
    Daran-Lapujade P; Jansen ML; Daran JM; van Gulik W; de Winde JH; Pronk JT
    J Biol Chem; 2004 Mar; 279(10):9125-38. PubMed ID: 14630934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures.
    Tai SL; Daran-Lapujade P; Luttik MA; Walsh MC; Diderich JA; Krijger GC; van Gulik WM; Pronk JT; Daran JM
    J Biol Chem; 2007 Apr; 282(14):10243-51. PubMed ID: 17251183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.
    De Nicola R; Hazelwood LA; De Hulster EA; Walsh MC; Knijnenburg TA; Reinders MJ; Walker GM; Pronk JT; Daran JM; Daran-Lapujade P
    Appl Environ Microbiol; 2007 Dec; 73(23):7680-92. PubMed ID: 17933919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide expression analysis of yeast response during exposure to 4 degrees C.
    Murata Y; Homma T; Kitagawa E; Momose Y; Sato MS; Odani M; Shimizu H; Hasegawa-Mizusawa M; Matsumoto R; Mizukami S; Fujita K; Parveen M; Komatsu Y; Iwahashi H
    Extremophiles; 2006 Apr; 10(2):117-28. PubMed ID: 16254683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess.
    van den Brink J; Daran-Lapujade P; Pronk JT; de Winde JH
    BMC Genomics; 2008 Feb; 9():100. PubMed ID: 18304306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
    Knijnenburg TA; Daran JM; van den Broek MA; Daran-Lapujade PA; de Winde JH; Pronk JT; Reinders MJ; Wessels LF
    BMC Genomics; 2009 Jan; 10():53. PubMed ID: 19173729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Tai SL; Snoek I; Luttik MAH; Almering MJH; Walsh MC; Pronk JT; Daran JM
    Microbiology (Reading); 2007 Mar; 153(Pt 3):877-886. PubMed ID: 17322208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Abbott DA; Suir E; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2008 Sep; 74(18):5759-68. PubMed ID: 18676708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae.
    García-Ríos E; Alonso-Del-Real J; Lip KYF; Pinheiro T; Teixeira J; van Gulik W; Domingues L; Querol A; Guillamón JM
    Genomics; 2022 Jul; 114(4):110386. PubMed ID: 35569731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
    Boender LG; van Maris AJ; de Hulster EA; Almering MJ; van der Klei IJ; Veenhuis M; de Winde JH; Pronk JT; Daran-Lapujade P
    FEMS Yeast Res; 2011 Dec; 11(8):603-20. PubMed ID: 22093745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur.
    Boer VM; de Winde JH; Pronk JT; Piper MD
    J Biol Chem; 2003 Jan; 278(5):3265-74. PubMed ID: 12414795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutritional homeostasis in batch and steady-state culture of yeast.
    Saldanha AJ; Brauer MJ; Botstein D
    Mol Biol Cell; 2004 Sep; 15(9):4089-104. PubMed ID: 15240820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress.
    Strassburg K; Walther D; Takahashi H; Kanaya S; Kopka J
    OMICS; 2010 Jun; 14(3):249-59. PubMed ID: 20450442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity.
    Hewezi T; Léger M; El Kayal W; Gentzbittel L
    J Exp Bot; 2006; 57(12):3109-22. PubMed ID: 16899522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.