BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 17928435)

  • 1. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex.
    Fogarty M; Grist M; Gelman D; Marín O; Pachnis V; Kessaris N
    J Neurosci; 2007 Oct; 27(41):10935-46. PubMed ID: 17928435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
    Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z
    Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N
    J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct cortical migrations from the medial and lateral ganglionic eminences.
    Anderson SA; Marín O; Horn C; Jennings K; Rubenstein JL
    Development; 2001 Feb; 128(3):353-63. PubMed ID: 11152634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons.
    Ghanem N; Yu M; Long J; Hatch G; Rubenstein JL; Ekker M
    J Neurosci; 2007 May; 27(19):5012-22. PubMed ID: 17494687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.
    Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA
    Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on the developmental origins of cortical interneuron diversity.
    Fishell G
    Novartis Found Symp; 2007; 288():21-35; discussion 35-44, 96-8. PubMed ID: 18494250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes.
    Liodis P; Denaxa M; Grigoriou M; Akufo-Addo C; Yanagawa Y; Pachnis V
    J Neurosci; 2007 Mar; 27(12):3078-89. PubMed ID: 17376969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NKX2.1 specifies cortical interneuron fate by activating Lhx6.
    Du T; Xu Q; Ocbina PJ; Anderson SA
    Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence.
    Inan M; Welagen J; Anderson SA
    Cereb Cortex; 2012 Apr; 22(4):820-7. PubMed ID: 21693785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons.
    Miyoshi G; Hjerling-Leffler J; Karayannis T; Sousa VH; Butt SJ; Battiste J; Johnson JE; Machold RP; Fishell G
    J Neurosci; 2010 Feb; 30(5):1582-94. PubMed ID: 20130169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide Y-expressing GABAergic interneurons.
    Tanaka DH; Mikami S; Nagasawa T; Miyazaki J; Nakajima K; Murakami F
    Cereb Cortex; 2010 Dec; 20(12):2810-7. PubMed ID: 20200107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons.
    McKenzie MG; Cobbs LV; Dummer PD; Petros TJ; Halford MM; Stacker SA; Zou Y; Fishell GJ; Au E
    Neuron; 2019 Sep; 103(5):853-864.e4. PubMed ID: 31257105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical interneurons and their origins.
    Wonders C; Anderson SA
    Neuroscientist; 2005 Jun; 11(3):199-205. PubMed ID: 15911869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration.
    Katayama K; Imai F; Campbell K; Lang RA; Zheng Y; Yoshida Y
    Development; 2013 Aug; 140(15):3139-45. PubMed ID: 23861058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons.
    Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G
    J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin and molecular specification of striatal interneurons.
    Marin O; Anderson SA; Rubenstein JL
    J Neurosci; 2000 Aug; 20(16):6063-76. PubMed ID: 10934256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons.
    Denaxa M; Kalaitzidou M; Garefalaki A; Achimastou A; Lasrado R; Maes T; Pachnis V
    Cell Rep; 2012 Nov; 2(5):1351-62. PubMed ID: 23142661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MTG8 interacts with LHX6 to specify cortical interneuron subtype identity.
    Asgarian Z; Oliveira MG; Stryjewska A; Maragkos I; Rubin AN; Magno L; Pachnis V; Ghorbani M; Hiebert SW; Denaxa M; Kessaris N
    Nat Commun; 2022 Sep; 13(1):5217. PubMed ID: 36064547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.