These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 17928457)

  • 1. Modular control of limb movements during human locomotion.
    Ivanenko YP; Cappellini G; Dominici N; Poppele RE; Lacquaniti F
    J Neurosci; 2007 Oct; 27(41):11149-61. PubMed ID: 17928457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of planar covariation of elevation angles during human locomotion.
    Ivanenko YP; d'Avella A; Poppele RE; Lacquaniti F
    J Neurophysiol; 2008 Apr; 99(4):1890-8. PubMed ID: 18272871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walk-, run- and gallop-like gait patterns in human sideways locomotion.
    Yamashita D; Shinya M; Fujii K; Oda S; Kouzaki M
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1480-4. PubMed ID: 24055531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.
    Hubel TY; Usherwood JR
    Biol Lett; 2013 Apr; 9(2):20121121. PubMed ID: 23325739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of emotion in the kinematics of locomotion.
    Barliya A; Omlor L; Giese MA; Berthoz A; Flash T
    Exp Brain Res; 2013 Mar; 225(2):159-76. PubMed ID: 23250443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Transitions in Human Infants: Coping with Extremes of Treadmill Speed.
    Vasudevan EV; Patrick SK; Yang JF
    PLoS One; 2016; 11(2):e0148124. PubMed ID: 26828941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs.
    Catavitello G; Ivanenko YP; Lacquaniti F
    PLoS One; 2015; 10(7):e0133936. PubMed ID: 26218076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination variability around the walk to run transition during human locomotion.
    Seay JF; Haddad JM; van Emmerik RE; Hamill J
    Motor Control; 2006 Apr; 10(2):178-96. PubMed ID: 16871012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower-limb kinematics and kinetics during continuously varying human locomotion.
    Reznick E; Embry KR; Neuman R; BolĂ­var-Nieto E; Fey NP; Gregg RD
    Sci Data; 2021 Oct; 8(1):282. PubMed ID: 34711856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic analysis of cat hindlimb stepping.
    Shen L; Poppele RE
    J Neurophysiol; 1995 Dec; 74(6):2266-80. PubMed ID: 8747190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
    Ivanenko YP; Grasso R; Macellari V; Lacquaniti F
    J Neurophysiol; 2002 Jun; 87(6):3070-89. PubMed ID: 12037209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The assessment of muscle mechanical properties in multi-joint movements reveals inverse correlation of leg muscle force and power with gait transition speed.
    Dobrijevic S; Ranisavljev I; Djuric S; Ilic V
    Gait Posture; 2020 Mar; 77():59-63. PubMed ID: 31991280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.