These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 17928540)
1. The origin of passive force enhancement in skeletal muscle. Joumaa V; Rassier DE; Leonard TR; Herzog W Am J Physiol Cell Physiol; 2008 Jan; 294(1):C74-8. PubMed ID: 17928540 [TBL] [Abstract][Full Text] [Related]
2. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Leonard TR; Herzog W Am J Physiol Cell Physiol; 2010 Jul; 299(1):C14-20. PubMed ID: 20357181 [TBL] [Abstract][Full Text] [Related]
3. Passive force enhancement in single myofibrils. Joumaa V; Rassier DE; Leonard TR; Herzog W Pflugers Arch; 2007 Nov; 455(2):367-71. PubMed ID: 17551750 [TBL] [Abstract][Full Text] [Related]
4. Activation and stretch-induced passive force enhancement--are you pulling my chain? Focus on "Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction". Granzier HL Am J Physiol Cell Physiol; 2010 Jul; 299(1):C11-3. PubMed ID: 20445175 [No Abstract] [Full Text] [Related]
5. The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms. Cornachione AS; Leite F; Bagni MA; Rassier DE Am J Physiol Cell Physiol; 2016 Jan; 310(1):C19-26. PubMed ID: 26405100 [TBL] [Abstract][Full Text] [Related]
6. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction. Cornachione AS; Rassier DE Am J Physiol Cell Physiol; 2012 Feb; 302(3):C566-74. PubMed ID: 22094333 [TBL] [Abstract][Full Text] [Related]
7. Calcium sensitivity of residual force enhancement in rabbit skinned fibers. Joumaa V; Herzog W Am J Physiol Cell Physiol; 2014 Aug; 307(4):C395-401. PubMed ID: 24965591 [TBL] [Abstract][Full Text] [Related]
8. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils? Joumaa V; Bertrand F; Liu S; Poscente S; Herzog W Am J Physiol Cell Physiol; 2018 Sep; 315(3):C310-C318. PubMed ID: 29768046 [TBL] [Abstract][Full Text] [Related]
9. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils. Minajeva A; Neagoe C; Kulke M; Linke WA J Physiol; 2002 Apr; 540(Pt 1):177-88. PubMed ID: 11927678 [TBL] [Abstract][Full Text] [Related]
10. Titin force is enhanced in actively stretched skeletal muscle. Powers K; Schappacher-Tilp G; Jinha A; Leonard T; Nishikawa K; Herzog W J Exp Biol; 2014 Oct; 217(Pt 20):3629-36. PubMed ID: 25147246 [TBL] [Abstract][Full Text] [Related]
11. Differences in titin segmental elongation between passive and active stretch in skeletal muscle. DuVall MM; Jinha A; Schappacher-Tilp G; Leonard TR; Herzog W J Exp Biol; 2017 Dec; 220(Pt 23):4418-4425. PubMed ID: 28970245 [TBL] [Abstract][Full Text] [Related]
12. Titin stiffness modifies the force-generating region of muscle sarcomeres. Li Y; Lang P; Linke WA Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135 [TBL] [Abstract][Full Text] [Related]
13. Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. Kulke M; Fujita-Becker S; Rostkova E; Neagoe C; Labeit D; Manstein DJ; Gautel M; Linke WA Circ Res; 2001 Nov; 89(10):874-81. PubMed ID: 11701614 [TBL] [Abstract][Full Text] [Related]
14. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension. Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032 [TBL] [Abstract][Full Text] [Related]
15. Force enhancement following stretch in a single sarcomere. Leonard TR; DuVall M; Herzog W Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251 [TBL] [Abstract][Full Text] [Related]
16. Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils. Shalabi N; Cornachione A; de Souza Leite F; Vengallatore S; Rassier DE J Physiol; 2017 Mar; 595(6):2085-2098. PubMed ID: 28028799 [TBL] [Abstract][Full Text] [Related]
17. Sarcomere length-dependent effects on Ca Li KL; Methawasin M; Tanner BCW; Granzier HL; Solaro RJ; Dong WJ J Gen Physiol; 2019 Jan; 151(1):30-41. PubMed ID: 30523116 [TBL] [Abstract][Full Text] [Related]
18. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. Pizon V; Iakovenko A; Van Der Ven PF; Kelly R; Fatu C; Fürst DO; Karsenti E; Gautel M J Cell Sci; 2002 Dec; 115(Pt 23):4469-82. PubMed ID: 12414993 [TBL] [Abstract][Full Text] [Related]
19. Calcium-dependent inhibition of in vitro thin-filament motility by native titin. Kellermayer MS; Granzier HL FEBS Lett; 1996 Feb; 380(3):281-6. PubMed ID: 8601441 [TBL] [Abstract][Full Text] [Related]
20. An activatable molecular spring reduces muscle tearing during extreme stretching. Leonard TR; Joumaa V; Herzog W J Biomech; 2010 Nov; 43(15):3063-6. PubMed ID: 20728890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]