BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 17928589)

  • 1. Cellular response to hyperosmotic stresses.
    Burg MB; Ferraris JD; Dmitrieva NI
    Physiol Rev; 2007 Oct; 87(4):1441-74. PubMed ID: 17928589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP.
    Zhou X; Ferraris JD; Burg MB
    Am J Physiol Renal Physiol; 2006 May; 290(5):F1169-76. PubMed ID: 16303854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonic stress response.
    Dmitrieva NI; Burg MB
    Mutat Res; 2005 Jan; 569(1-2):65-74. PubMed ID: 15603752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonicity-dependent regulation of osmoprotective genes in mammalian cells.
    Ferraris JD; Burg MB
    Contrib Nephrol; 2006; 152():125-141. PubMed ID: 17065809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of heat shock protein 27 and 70 in renal papillary collecting duct and interstitial cells - implications for urea resistance.
    Neuhofer W; Fraek ML; Ouyang N; Beck FX
    J Physiol; 2005 May; 564(Pt 3):715-22. PubMed ID: 15718262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP.
    Irarrazabal CE; Liu JC; Burg MB; Ferraris JD
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8809-14. PubMed ID: 15173573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of hypertonicity-induced aquaporin-1 by sodium chloride, urea, betaine, and heat shock in murine renal medullary cells.
    Umenishi F; Yoshihara S; Narikiyo T; Schrier RW
    J Am Soc Nephrol; 2005 Mar; 16(3):600-7. PubMed ID: 15647343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three GADD45 isoforms contribute to hypertonic stress phenotype of murine renal inner medullary cells.
    Chakravarty D; Cai Q; Ferraris JD; Michea L; Burg MB; Kültz D
    Am J Physiol Renal Physiol; 2002 Nov; 283(5):F1020-9. PubMed ID: 12372778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP.
    Zhou X; Ferraris JD; Cai Q; Agarwal A; Burg MB
    Am J Physiol Renal Physiol; 2005 Aug; 289(2):F377-85. PubMed ID: 15769933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes.
    Cai Q; Ferraris JD; Burg MB
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F58-67. PubMed ID: 13129850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA.
    Zhang Z; Dmitrieva NI; Park JH; Levine RL; Burg MB
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9491-6. PubMed ID: 15190183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling and gene regulation by urea in cells of the mammalian kidney medulla.
    Tian W; Cohen DM
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):429-36. PubMed ID: 11913456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of NaCl and urea enhances survival of IMCD cells to hyperosmolality.
    Santos BC; Chevaile A; Hébert MJ; Zagajeski J; Gullans SR
    Am J Physiol; 1998 Jun; 274(6):F1167-73. PubMed ID: 9841510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat renal papillary tissue explants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea.
    Woolverton WS; Githens S; O'Dell-Smith R; Bartell CK
    J Exp Zool; 1990 Nov; 256(2):189-99. PubMed ID: 2280248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells.
    Cai Q; Dmitrieva NI; Ferraris JD; Michea LF; Salvador JM; Hollander MC; Fornace AJ; Fenton RA; Burg MB
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F341-9. PubMed ID: 16597604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial tonicity controls TonEBP expression in the renal medulla.
    Sheen MR; Kim JA; Lim SW; Jung JY; Han KH; Jeon US; Park SH; Kim J; Kwon HM
    Kidney Int; 2009 Mar; 75(5):518-25. PubMed ID: 19052532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture of rat renal medullary tissue in media made hyperosmotic with NaCl and urea.
    Isabelle ME; Githens S; Moses RL; Bartell CK
    J Exp Zool; 1994 Jul; 269(4):308-18. PubMed ID: 8064258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of renal inner medullary epithelial cells to osmotic stress.
    Burg MB
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):661-6. PubMed ID: 12443923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ras signaling in the inner medullary cell response to urea and NaCl.
    Tian W; Boss GR; Cohen DM
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C372-80. PubMed ID: 10666033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.