These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17928697)
1. Influence of position of substituent groups on removal of chlorophenols and cresols by horseradish peroxidase and determination of optimum conditions. Yamada K; Shibuya T; Noda M; Uchiyama N; Kashiwada A; Matsuda K; Hirata M Biosci Biotechnol Biochem; 2007 Oct; 71(10):2503-10. PubMed ID: 17928697 [TBL] [Abstract][Full Text] [Related]
2. Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives. Yamada K; Ikeda N; Takano Y; Kashiwada A; Matsuda K; Hirata M Environ Technol; 2010 Mar; 31(3):243-56. PubMed ID: 20426266 [TBL] [Abstract][Full Text] [Related]
3. Destruction of cresols by Fenton oxidation process. Kavitha V; Palanivelu K Water Res; 2005 Aug; 39(13):3062-72. PubMed ID: 15992853 [TBL] [Abstract][Full Text] [Related]
4. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Dalal S; Gupta MN Chemosphere; 2007 Mar; 67(4):741-7. PubMed ID: 17140630 [TBL] [Abstract][Full Text] [Related]
5. Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects. Auriol M; Filali-Meknassi Y; Adams CD; Tyagi RD Water Res; 2006 Aug; 40(15):2847-56. PubMed ID: 16849026 [TBL] [Abstract][Full Text] [Related]
6. Wet peroxide oxidation of chlorophenols. García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Bayramoğlu G; Arica MY J Hazard Mater; 2008 Aug; 156(1-3):148-55. PubMed ID: 18207637 [TBL] [Abstract][Full Text] [Related]
8. The effects of preozonation on the biodegradability of mixed phenolic solution using a new gas-inducing reactor. Hsu YC; Yang HC; Chen JH Chemosphere; 2005 Jun; 59(9):1279-87. PubMed ID: 15857639 [TBL] [Abstract][Full Text] [Related]
9. Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju. Denizli A; Cihangir N; Tüzmen N; Alsancak G Bioresour Technol; 2005 Jan; 96(1):59-62. PubMed ID: 15364081 [TBL] [Abstract][Full Text] [Related]
10. Removal of linear and branched alkylphenols from aqueous solutions with horseradish peroxidase. Ikeda N; Yamada K; Shibuya T; Kashiwada A; Matsuda K; Hirata M Biosci Biotechnol Biochem; 2008 May; 72(5):1368-71. PubMed ID: 18460791 [TBL] [Abstract][Full Text] [Related]
11. Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide. Tonegawa M; Dec J; Bollag JM J Environ Qual; 2003; 32(4):1222-7. PubMed ID: 12931875 [TBL] [Abstract][Full Text] [Related]
12. Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Yamada K; Akiba Y; Shibuya T; Kashiwada A; Matsuda K; Hirata M Biotechnol Prog; 2005; 21(3):823-9. PubMed ID: 15932262 [TBL] [Abstract][Full Text] [Related]
13. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions. Kojima Y; Fukuta T; Yamada T; Onyango MS; Bernardo EC; Matsuda H; Yagishita K Water Res; 2005 Jan; 39(1):29-36. PubMed ID: 15607161 [TBL] [Abstract][Full Text] [Related]
14. Effect of influent pH and alkalinity on the removal of chlorophenols in sequential anaerobic-aerobic reactors. Majumder PS; Gupta SK Bioresour Technol; 2009 Mar; 100(5):1881-3. PubMed ID: 19019673 [TBL] [Abstract][Full Text] [Related]
15. Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction. Poulopoulos SG; Nikolaki M; Karampetsos D; Philippopoulos CJ J Hazard Mater; 2008 May; 153(1-2):582-7. PubMed ID: 17931771 [TBL] [Abstract][Full Text] [Related]
16. [Kinetics of P-chlorophenol wastewater treatment by UV/H2O2 oxidation]. Chen L; Du Y; Lei L Huan Jing Ke Xue; 2003 Sep; 24(5):106-9. PubMed ID: 14719270 [TBL] [Abstract][Full Text] [Related]
17. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments. Wang H; Wang JL J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367 [TBL] [Abstract][Full Text] [Related]
18. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Kimura Y; Takahashi A; Kashiwada A; Yamada K Environ Technol; 2016; 37(14):1733-44. PubMed ID: 26652753 [TBL] [Abstract][Full Text] [Related]
19. Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water. Li ZL; Liu W; Chen XF; Shang WL Water Sci Technol; 2009; 59(9):1751-8. PubMed ID: 19448310 [TBL] [Abstract][Full Text] [Related]
20. Biodegradability of chlorophenol wastewater enhanced by solar photo-Fenton process. Kuo WS; Lin IT Water Sci Technol; 2009; 59(5):973-8. PubMed ID: 19273896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]