These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17928697)
21. A combination of ultrasound and a bio-catalyst: removal of 2-chlorophenol from aqueous solution. Entezari MH; Mostafai M; Sarafraz-Yazdi A Ultrason Sonochem; 2006 Jan; 13(1):37-41. PubMed ID: 16223685 [TBL] [Abstract][Full Text] [Related]
22. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. Auriol M; Filali-Meknassi Y; Adams CD; Tyagi RD; Noguerol TN; Piña B Chemosphere; 2008 Jan; 70(3):445-52. PubMed ID: 17897698 [TBL] [Abstract][Full Text] [Related]
23. Retention and extractability of phenol, cresol, and dichlorophenol exposed to two surface soils in the presence of horseradish peroxidase enzyme. Xu F; Bhandari A J Agric Food Chem; 2003 Jan; 51(1):183-8. PubMed ID: 12502405 [TBL] [Abstract][Full Text] [Related]
24. Removal of 3-chlorophenol from water using rice-straw-based carbon. Wang SL; Tzou YM; Lu YH; Sheng G J Hazard Mater; 2007 Aug; 147(1-2):313-8. PubMed ID: 17276599 [TBL] [Abstract][Full Text] [Related]
25. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts. Li N; Descorme C; Besson M J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043 [TBL] [Abstract][Full Text] [Related]
26. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production. Pedroza AM; Mosqueda R; Alonso-Vante N; Rodríguez-Vázquez R Chemosphere; 2007 Mar; 67(4):793-801. PubMed ID: 17123583 [TBL] [Abstract][Full Text] [Related]
27. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. Moussavi G; Yazdanbakhsh A; Heidarizad M J Hazard Mater; 2009 Nov; 171(1-3):907-13. PubMed ID: 19616892 [TBL] [Abstract][Full Text] [Related]
28. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon. Kennedy LJ; Vijaya JJ; Sekaran G; Kayalvizhi K J Hazard Mater; 2007 Oct; 149(1):134-43. PubMed ID: 17509758 [TBL] [Abstract][Full Text] [Related]
29. Supercritical gasification for the treatment of o-cresol wastewater. Wei CH; Hu CS; Wu CF; Yan B J Environ Sci (China); 2006; 18(4):644-9. PubMed ID: 17078539 [TBL] [Abstract][Full Text] [Related]
30. The formation and influence of hydrogen peroxide during ozonation of para-chlorophenol. Pi Y; Zhang L; Wang J J Hazard Mater; 2007 Mar; 141(3):707-12. PubMed ID: 16938386 [TBL] [Abstract][Full Text] [Related]
31. Pd-Al pillared clays as catalysts for the hydrodechlorination of 4-chlorophenol in aqueous phase. Molina CB; Calvo L; Gilarranz MA; Casas JA; Rodriguez JJ J Hazard Mater; 2009 Dec; 172(1):214-23. PubMed ID: 19632044 [TBL] [Abstract][Full Text] [Related]
32. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure. Sanchez I; Stüber F; Font J; Fortuny A; Fabregat A; Bengoa C Chemosphere; 2007 Jun; 68(2):338-44. PubMed ID: 17300830 [TBL] [Abstract][Full Text] [Related]
33. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bódalo A; Bastida J; Máximo MF; Montiel MC; Gómez M; Murcia MD Bioprocess Biosyst Eng; 2008 Oct; 31(6):587-93. PubMed ID: 18270748 [TBL] [Abstract][Full Text] [Related]
34. Kinetic study of the gas-phase reactions of chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers. Bejan I; Duncianu M; Olariu R; Barnes I; Seakins PW; Wiesen P J Phys Chem A; 2015 May; 119(20):4735-45. PubMed ID: 25893980 [TBL] [Abstract][Full Text] [Related]
35. Removal of 2-chlorophenol from water using rice-straw derived ash. Chang RR; Wang SL; Tzou YM; Chen YM; Wang MK J Environ Sci Health B; 2011; 46(2):128-36. PubMed ID: 21328121 [TBL] [Abstract][Full Text] [Related]
36. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions. Majumder PS; Gupta SK Bioresour Technol; 2008 Jul; 99(10):4169-77. PubMed ID: 17928222 [TBL] [Abstract][Full Text] [Related]
37. Fe salts as catalyst for the wet oxidation of o-chlorophenol. Xu XH; He P; Jin J; Hao ZW J Zhejiang Univ Sci B; 2005 Jun; 6(6):569-73. PubMed ID: 15909346 [TBL] [Abstract][Full Text] [Related]
38. Combination of hydrodechlorination and biodegradation for the abatement of chlorophenols. Zhou S; Jin X; Sun F; Zhou H; Yang C; Xia C Water Sci Technol; 2012; 65(4):780-6. PubMed ID: 22277240 [TBL] [Abstract][Full Text] [Related]
39. Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products. Du P; Zhao H; Li H; Zhang D; Huang CH; Deng M; Liu C; Cao H Chemosphere; 2016 Feb; 144():1674-81. PubMed ID: 26519798 [TBL] [Abstract][Full Text] [Related]
40. Preparation of magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples. Li XS; Xu LD; Shan YB; Yuan BF; Feng YQ J Chromatogr A; 2012 Nov; 1265():24-30. PubMed ID: 23062977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]