These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 17929327)
1. Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Yee JC; de Leon Gatti M; Philp RJ; Yap M; Hu WS Biotechnol Bioeng; 2008 Apr; 99(5):1186-204. PubMed ID: 17929327 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. De Leon Gatti M; Wlaschin KF; Nissom PM; Yap M; Hu WS J Biosci Bioeng; 2007 Jan; 103(1):82-91. PubMed ID: 17298905 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Yee JC; Gerdtzen ZP; Hu WS Biotechnol Bioeng; 2009 Jan; 102(1):246-63. PubMed ID: 18726962 [TBL] [Abstract][Full Text] [Related]
4. Quality assessment of cross-species hybridization of CHO transcriptome on a mouse DNA oligo microarray. Yee JC; Wlaschin KF; Chuah SH; Nissom PM; Hu WS Biotechnol Bioeng; 2008 Dec; 101(6):1359-65. PubMed ID: 18814282 [TBL] [Abstract][Full Text] [Related]
5. Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Jiang Z; Sharfstein ST Biotechnol Bioeng; 2008 May; 100(1):189-94. PubMed ID: 18023047 [TBL] [Abstract][Full Text] [Related]
6. Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate. Baik JY; Joo EJ; Kim YH; Lee GM J Biotechnol; 2008 Feb; 133(4):461-8. PubMed ID: 18164778 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. Kantardjieff A; Jacob NM; Yee JC; Epstein E; Kok YJ; Philp R; Betenbaugh M; Hu WS J Biotechnol; 2010 Jan; 145(2):143-59. PubMed ID: 19770009 [TBL] [Abstract][Full Text] [Related]
8. Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol. Meleady P; Henry M; Gammell P; Doolan P; Sinacore M; Melville M; Francullo L; Leonard M; Charlebois T; Clynes M Proteomics; 2008 Jul; 8(13):2611-24. PubMed ID: 18546152 [TBL] [Abstract][Full Text] [Related]
9. Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Baik JY; Lee MS; An SR; Yoon SK; Joo EJ; Kim YH; Park HW; Lee GM Biotechnol Bioeng; 2006 Feb; 93(2):361-71. PubMed ID: 16187333 [TBL] [Abstract][Full Text] [Related]
10. Molecular portrait of high productivity in recombinant NS0 cells. Seth G; Philp RJ; Lau A; Jiun KY; Yap M; Hu WS Biotechnol Bioeng; 2007 Jul; 97(4):933-51. PubMed ID: 17149768 [TBL] [Abstract][Full Text] [Related]
11. Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Doolan P; Meleady P; Barron N; Henry M; Gallagher R; Gammell P; Melville M; Sinacore M; McCarthy K; Leonard M; Charlebois T; Clynes M Biotechnol Bioeng; 2010 May; 106(1):42-56. PubMed ID: 20091739 [TBL] [Abstract][Full Text] [Related]
12. A DIGE approach for the assessment of differential expression of the CHO proteome under sodium butyrate addition: Effect of Bcl-x(L) overexpression. Baik JY; Lee GM Biotechnol Bioeng; 2010 Feb; 105(2):358-67. PubMed ID: 19739093 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic responses to sodium chloride-induced osmotic stress: a study of industrial fed-batch CHO cell cultures. Shen D; Kiehl TR; Khattak SF; Li ZJ; He A; Kayne PS; Patel V; Neuhaus IM; Sharfstein ST Biotechnol Prog; 2010; 26(4):1104-15. PubMed ID: 20306541 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the role of requiem in the growth and death of Chinese hamster ovary cells. Lim Y; Seah VX; Mantalaris A; Yap MG; Wong DC Apoptosis; 2010 Apr; 15(4):450-62. PubMed ID: 20012365 [TBL] [Abstract][Full Text] [Related]
15. Using microarray technology to select housekeeping genes in Chinese hamster ovary cells. Bahr SM; Borgschulte T; Kayser KJ; Lin N Biotechnol Bioeng; 2009 Dec; 104(5):1041-6. PubMed ID: 19557832 [TBL] [Abstract][Full Text] [Related]
16. Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Wong DC; Wong KT; Nissom PM; Heng CK; Yap MG Biotechnol Bioeng; 2006 Oct; 95(3):350-61. PubMed ID: 16894638 [TBL] [Abstract][Full Text] [Related]
17. Proteomic profiling of a high-producing Chinese hamster ovary cell culture. Carlage T; Hincapie M; Zang L; Lyubarskaya Y; Madden H; Mhatre R; Hancock WS Anal Chem; 2009 Sep; 81(17):7357-62. PubMed ID: 19663468 [TBL] [Abstract][Full Text] [Related]
18. Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Allen MJ; Boyce JP; Trentalange MT; Treiber DL; Rasmussen B; Tillotson B; Davis R; Reddy P Biotechnol Bioeng; 2008 Aug; 100(6):1193-204. PubMed ID: 18351681 [TBL] [Abstract][Full Text] [Related]
19. Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. Jeon MK; Lee GM J Microbiol Biotechnol; 2007 Jun; 17(6):1036-40. PubMed ID: 18050924 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a genomics platform for cross-species transcriptome analysis of recombinant CHO cells. Ernst W; Trummer E; Mead J; Bessant C; Strelec H; Katinger H; Hesse F Biotechnol J; 2006 Jun; 1(6):639-50. PubMed ID: 16892312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]