These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 17929834)
1. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8. Omi R; Goto M; Miyahara I; Manzoku M; Ebihara A; Hirotsu K Biochemistry; 2007 Nov; 46(44):12618-27. PubMed ID: 17929834 [TBL] [Abstract][Full Text] [Related]
2. Expression, purification and preliminary X-ray characterization of histidinol phosphate phosphatase. Omi R; Goto M; Nakagawa N; Miyahara I; Hirotsu K Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):574-6. PubMed ID: 14993698 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the YdjC-family protein TTHB029 from Thermus thermophilus HB8: structural relationship with peptidoglycan N-acetylglucosamine deacetylase. Imagawa T; Iino H; Kanagawa M; Ebihara A; Kuramitsu S; Tsuge H Biochem Biophys Res Commun; 2008 Mar; 367(3):535-41. PubMed ID: 18177738 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8. Taguchi Y; Sugishima M; Fukuyama K Biochemistry; 2004 Apr; 43(14):4111-8. PubMed ID: 15065853 [TBL] [Abstract][Full Text] [Related]
6. Structure of the putative thioesterase protein TTHA1846 from Thermus thermophilus HB8 complexed with coenzyme A and a zinc ion. Hosaka T; Murayama K; Kato-Murayama M; Urushibata A; Akasaka R; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):767-76. PubMed ID: 19622860 [TBL] [Abstract][Full Text] [Related]
7. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Nakai T; Okada K; Akutsu S; Miyahara I; Kawaguchi S; Kato R; Kuramitsu S; Hirotsu K Biochemistry; 1999 Feb; 38(8):2413-24. PubMed ID: 10029535 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism. Bagautdinov B; Kunishima N J Mol Biol; 2007 Oct; 373(2):424-38. PubMed ID: 17825835 [TBL] [Abstract][Full Text] [Related]
9. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins. Ghodge SV; Fedorov AA; Fedorov EV; Hillerich B; Seidel R; Almo SC; Raushel FM Biochemistry; 2013 Feb; 52(6):1101-12. PubMed ID: 23327428 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state. Yamamoto H; Miwa H; Kunishima N J Mol Biol; 2008 Oct; 382(3):747-62. PubMed ID: 18675274 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270 [TBL] [Abstract][Full Text] [Related]
13. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily. Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. Ishikawa H; Nakagawa N; Kuramitsu S; Masui R J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies. Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998 [TBL] [Abstract][Full Text] [Related]
16. ATP-induced structural change of dephosphocoenzyme A kinase from Thermus thermophilus HB8. Seto A; Murayama K; Toyama M; Ebihara A; Nakagawa N; Kuramitsu S; Shirouzu M; Yokoyama S Proteins; 2005 Jan; 58(1):235-42. PubMed ID: 15526298 [TBL] [Abstract][Full Text] [Related]
17. Structure of aldolase from Thermus thermophilus HB8 showing the contribution of oligomeric state to thermostability. Lokanath NK; Shiromizu I; Ohshima N; Nodake Y; Sugahara M; Yokoyama S; Kuramitsu S; Miyano M; Kunishima N Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1816-23. PubMed ID: 15388928 [TBL] [Abstract][Full Text] [Related]
18. Novel reaction mechanism of GTP cyclohydrolase I. High-resolution X-ray crystallography of Thermus thermophilus HB8 enzyme complexed with a transition state analogue, the 8-oxoguanine derivative. Tanaka Y; Nakagawa N; Kuramitsu S; Yokoyama S; Masui R J Biochem; 2005 Sep; 138(3):263-75. PubMed ID: 16169877 [TBL] [Abstract][Full Text] [Related]
19. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Chevalier BS; Monnat RJ; Stoddard BL Nat Struct Biol; 2001 Apr; 8(4):312-6. PubMed ID: 11276249 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of metal-dependent allantoinase from Escherichia coli. Kim K; Kim MI; Chung J; Ahn JH; Rhee S J Mol Biol; 2009 Apr; 387(5):1067-74. PubMed ID: 19248789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]