These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17929964)

  • 41. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.
    Wu H; Noé F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036705. PubMed ID: 21517623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging and identifying impurities in single-molecule FRET studies.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Oct; 2012(10):1109-12. PubMed ID: 23028079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S
    Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range.
    Vogelsang J; Doose S; Sauer M; Tinnefeld P
    Anal Chem; 2007 Oct; 79(19):7367-75. PubMed ID: 17822310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules.
    Plochowietz A; Crawford R; Kapanidis AN
    Phys Chem Chem Phys; 2014 Jul; 16(25):12688-94. PubMed ID: 24837080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increasing the resolution of single pair fluorescence resonance energy transfer measurements in solution via molecular cytometry.
    Werner JH; McCarney ER; Keller RA; Plaxco KW; Goodwin PM
    Anal Chem; 2007 May; 79(9):3509-13. PubMed ID: 17385843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using structure-function constraints in FRET studies of large macromolecular complexes.
    Bujalowski WM; Jezewska MJ
    Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.
    Wallace B; Atzberger PJ
    PLoS One; 2017; 12(5):e0177122. PubMed ID: 28542211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequential data assimilation for single-molecule FRET photon-counting data.
    Matsunaga Y; Kidera A; Sugita Y
    J Chem Phys; 2015 Jun; 142(21):214115. PubMed ID: 26049487
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward automated denoising of single molecular Förster resonance energy transfer data.
    Lee HC; Lin BL; Chang WH; Tu IP
    J Biomed Opt; 2012 Jan; 17(1):011007. PubMed ID: 22352641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. State transition analysis of spontaneous branch migration of the Holliday junction by photon-based single-molecule fluorescence resonance energy transfer.
    Okamoto K; Sako Y
    Biophys Chem; 2016 Feb; 209():21-7. PubMed ID: 26687325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparing sample chambers for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Oct; 2012(10):1104-8. PubMed ID: 23028078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative single-molecule conformational distributions: a case study with poly-(L-proline).
    Watkins LP; Chang H; Yang H
    J Phys Chem A; 2006 Apr; 110(15):5191-203. PubMed ID: 16610843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks.
    Opanasyuk O; Barth A; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Jul; 157(3):031501. PubMed ID: 35868918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein structure and dynamics from single-molecule fluorescence resonance energy transfer.
    Wang D; Geva E
    J Phys Chem B; 2005 Feb; 109(4):1626-34. PubMed ID: 16851134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-parameter photon-by-photon hidden Markov modeling.
    Harris PD; Narducci A; Gebhardt C; Cordes T; Weiss S; Lerner E
    Nat Commun; 2022 Feb; 13(1):1000. PubMed ID: 35194038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics.
    He Y; Lu M; Lu HP
    Phys Chem Chem Phys; 2013 Jan; 15(3):770-5. PubMed ID: 23085845
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing RNA Helicase Conformational Changes by Single-Molecule FRET Microscopy.
    Krause L; Klostermeier D
    Methods Mol Biol; 2021; 2209():119-132. PubMed ID: 33201466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.