These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17929998)

  • 1. Interaction between two polyelectrolyte brushes.
    Kumar NA; Seidel C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):020801. PubMed ID: 17929998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear osmotic brush regime: simulations and mean-field theory.
    Naji A; Netz RR; Seidel C
    Eur Phys J E Soft Matter; 2003 Oct; 12(2):223-237. PubMed ID: 15007659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-consistent field theory study of the effect of grafting density on the height of a weak polyelectrolyte brush.
    Witte KN; Kim S; Won YY
    J Phys Chem B; 2009 Aug; 113(32):11076-84. PubMed ID: 19610619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression of polymer brushes in the weak interpenetration regime: scaling theory and molecular dynamics simulations.
    Desai PR; Sinha S; Das S
    Soft Matter; 2017 Jun; 13(22):4159-4166. PubMed ID: 28555684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces.
    Sirchabesan M; Giasson S
    Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory and molecular dynamics simulations.
    Desai PR; Sinha S; Das S
    Phys Rev E; 2018 Mar; 97(3-1):032503. PubMed ID: 29776032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent quality effects on scaling behavior of poly(methyl methacrylate) brushes in the moderate- and high-density regimes.
    Moh LC; Losego MD; Braun PV
    Langmuir; 2011 Apr; 27(7):3698-702. PubMed ID: 21401067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the monomer density of grafted polyelectrolyte brushes and their interactions.
    Manciu M; Ruckenstein E
    Langmuir; 2004 Sep; 20(19):8155-64. PubMed ID: 15350087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscale modeling of polyelectrolyte brushes with salt.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Phys Chem B; 2010 Jun; 114(21):7274-85. PubMed ID: 20455593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origins of the salt-concentration-dependent instability and lateral nanoscale heterogeneities of weak polyelectrolyte brushes: gradient brush experiment and Flory-type theoretical analysis.
    Hur J; Witte KN; Sun W; Won YY
    Langmuir; 2010 Feb; 26(3):2021-34. PubMed ID: 20099924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excluded volume effects in compressed polymer brushes: A density functional theory.
    Chen C; Tang P; Qiu F; Shi AC
    J Chem Phys; 2015 Mar; 142(12):124904. PubMed ID: 25833606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression and interpenetration of adsorption-active brushes.
    Ivanova AS; Polotsky AA; Skvortsov AM; Klushin LI; Schmid F
    J Chem Phys; 2023 Jan; 158(2):024902. PubMed ID: 36641402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lubrication by Polyelectrolyte Brushes.
    Zhulina EB; Rubinstein M
    Macromolecules; 2014 Aug; 47(16):5825-5838. PubMed ID: 25180021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction.
    Biesheuvel PM
    J Colloid Interface Sci; 2004 Jul; 275(1):97-106. PubMed ID: 15158386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction between brush layers of charged and neutral bottle-brush macromolecules. molecular dynamics simulations.
    Carrillo JM; Russano D; Dobrynin AV
    Langmuir; 2011 Dec; 27(23):14599-608. PubMed ID: 22074225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of counterion fluctuations in a polyelectrolyte brush.
    Santangelo CD; Lau AW
    Eur Phys J E Soft Matter; 2004 Apr; 13(4):335-44. PubMed ID: 15170532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression of high grafting density opposing polymer brushes using molecular dynamics simulations in explicit solvent.
    Elliott IG; Kuhl TL; Faller R
    J Phys Chem B; 2013 Apr; 117(15):4134-41. PubMed ID: 23517014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.