These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 17930000)
1. Phase transition of a one-dimensional Ising model with distance-dependent connections. Chang Y; Sun L; Cai X Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000 [TBL] [Abstract][Full Text] [Related]
2. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
3. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related]
4. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes. Sampaio Filho CI; Dos Santos TB; Moreira AA; Moreira FG; Andrade JS Phys Rev E; 2016 May; 93(5):052101. PubMed ID: 27300824 [TBL] [Abstract][Full Text] [Related]
5. Phase transitions in an Ising model on a Euclidean network. Chatterjee A; Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036109. PubMed ID: 17025710 [TBL] [Abstract][Full Text] [Related]
6. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models. Chatterjee A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442 [TBL] [Abstract][Full Text] [Related]
7. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model. da Silva R; Alves N; Drugowich de Felício JR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307 [TBL] [Abstract][Full Text] [Related]
8. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition. Korneta W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model. Candia J; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066127. PubMed ID: 11415193 [TBL] [Abstract][Full Text] [Related]
10. Phase transition in the Ising model on a small-world network with distance-dependent interactions. Jeong D; Hong H; Kim BJ; Choi MY Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):027101. PubMed ID: 14525147 [TBL] [Abstract][Full Text] [Related]
11. Introducing small-world network effects to critical dynamics. Zhu JY; Zhu H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026125. PubMed ID: 12636766 [TBL] [Abstract][Full Text] [Related]
12. Ising model in small-world networks. Herrero CP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066110. PubMed ID: 12188786 [TBL] [Abstract][Full Text] [Related]
13. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination. Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077 [TBL] [Abstract][Full Text] [Related]
14. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [TBL] [Abstract][Full Text] [Related]
15. Dynamical percolation transition in the two-dimensional ANNNI model. Chandra AK J Phys Condens Matter; 2013 Apr; 25(13):136002. PubMed ID: 23454866 [TBL] [Abstract][Full Text] [Related]
16. Fluids with quenched disorder: scaling of the free energy barrier near critical points. Fischer T; Vink RL J Phys Condens Matter; 2011 Jun; 23(23):234117. PubMed ID: 21613708 [TBL] [Abstract][Full Text] [Related]
17. Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields. Milchev A; Müller M; Binder K; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031601. PubMed ID: 14524775 [TBL] [Abstract][Full Text] [Related]
18. Nonequilibrium phase transition in an Ising model without detailed balance. Kumar M; Dasgupta C Phys Rev E; 2020 Nov; 102(5-1):052111. PubMed ID: 33327127 [TBL] [Abstract][Full Text] [Related]
19. Nature of the glassy transition in simulations of the ferromagnetic plaquette Ising model. Davatolhagh S; Dariush D; Separdar L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031501. PubMed ID: 20365734 [TBL] [Abstract][Full Text] [Related]
20. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension. Kastening B; Dohm V Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]